Skip to main content
Log in

Argon plasma transport properties at reduced pressures

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Argon plasma transport properties at low pressures (0.01 atm) are calculated using a modified Debve length suggested by T. Kihara et al. Electrons and heavy species are treated as two different gases, and the method of calculation is based on the simplified theory (or transport properties developed by R. S. Devoto. A generalized Saha equation is used to calculate the species composition, and experimental data by Y. Itikawa for momentum transfer cross sections are adapted for the evaluation of electron-atom collision cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kannappan and T. K. Bose,Phys. Fluids 20, 1668 (1977).

    Google Scholar 

  2. T. K. Bose, D. Kannappan, and R. V. Seeniraj,Wärme Stoffübertragung 19, 3 (1985).

    Google Scholar 

  3. T. K. Bose,Prog. Aerospace Sci. 25, 1 (1988).

    Google Scholar 

  4. R. S. Devoto,Phys. Fluids 10, 2105 (1967).

    Google Scholar 

  5. R. S. Devoto,Phys. Fluids 10, 354 (1967).

    Google Scholar 

  6. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  7. E. J. Miller and S. I. Sandler,Phys. Fluids 16, 491 (1973).

    Google Scholar 

  8. T. Kihara and O. Aono,J. Phys. Soc. Jpn. 18, 837 (1963).

    Google Scholar 

  9. T. Kihara, O. Aono, and Y. Itikawa,J. Phys. Soc. Jpn. 18, 7 (1963).

    Google Scholar 

  10. T. Kihara,J. Phys. Soc. Jpn. 14, 4 (1959).

    Google Scholar 

  11. U. Daybelge,J. Appl. Phys. 41, 2130 (1970).

    Google Scholar 

  12. U. Daybelge,J. Phys. Soc. Jpn. 27, 2463 (1969).

    Google Scholar 

  13. K. C. Hsu, Ph.D. Thesis, Univ. of Minnesota (1982).

  14. S. Veis, “The Saha equation and lowering of ionization energy for two-temperature plasma,” Czechoslovak Conference on Electronics and Vacuum Physics, 4th, Prague (1968), pp. 105–110.

  15. I. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theorv of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  16. R. J. Zollweg and R. W. Liebermann,J. Appl. Phys. 62, 3261 (1987):

    Google Scholar 

  17. I. Amdur and E. A. Mason,Phys. Fluids 1, 5 (1958).

    Google Scholar 

  18. A. Dalgarno,Philos. Trans. R. Soc. London 250, 426 (1958).

    Google Scholar 

  19. Y. Itikawa,At. Data Nucl. Data Tables 14, 1 (1974).

    Google Scholar 

  20. P. Rabinowitz,Math. Comput. 13, 285 (1959).

    Google Scholar 

  21. E. A. Mason, R. J. Munn, and F. J. Smith,Phys. Fluids 10, 1827 (1967).

    Google Scholar 

  22. E. V. Samuilov and N. V. Tsitelauri,Teplofiz. Vys. Temp. 7, 1, 108 (1969).

    Google Scholar 

  23. S. C. Lin, E. L. Resler, and A. Kantrowitz,J. Appl. Phys. 26, 95 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, S., Pfender, E. Argon plasma transport properties at reduced pressures. Plasma Chem Plasma Process 10, 291–304 (1990). https://doi.org/10.1007/BF01447132

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447132

Key words

Navigation