Skip to main content
Log in

Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. I: Properties of the mixtures

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The transport properties of argon/ helium and argon/hydrogen mixtures used (or] plasma spraying were calculated according to the Chapman-Enskog theory with the following approximations: third for electrical conductivity and for electron translational thermal conductivity, second for heavy species translational thermal conductivity and internal thermal conductivity, and first for reactional thermal conductivity and viscosity.

The results are as follows:

  • - for electrical conductivity for T < 14,000 K, that of ArIH2 is almost unaffected by the mole percent H2, while that of ArlHe is almost that of Ar up to 80 mole % He.

  • - for viscosity, that of Ar-H2 is between those of pure Ar and pure H2, while for Ar-He mixtures an “anomalous” behavior is observed with higher values of the mixture viscosity compared to those of the components, in the temperature range 6000–10,000 K. Such behavior is due to the value of the Ar-He interaction potential proposed and experimentally verified by Aziz et al.

The simplified mixing rule of Wilke must be used very cautiously especially for Ar-He where it predicts higher values for the mixture.

The addition of hydrogen or helium to argon increases its thermal conductivity drastically. When considering the mean integrated thermal conductivity, the addition of hydrogen results in a step variation when dissociation occurs, while the increase is more regular when adding He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Zaat,Ann. Rev. Mater. Sci. 13, 9 (1983).

    Google Scholar 

  2. Thermal Spraying, Practice, Theorv, and Application, American Welding Soc., Miami, Florida (1985).

  3. P. Fauchais, A. Grimaud, A. Vardelle, and M. Vardelle,Ann. Phys. Fr. 14, 261 (1989).

    Google Scholar 

  4. P. Fauchais, J. F. Coudert, M. Vardelle, A. Vardelle, A. Grimaud, and P. Roumilhac, Nat. Proc. NTSC 87, Orlando, Florida, AIME, (1988), p. 11.

  5. M. Vardelle, A. Vardelle, P. Roumilhac, and P. Fauchais,Thermal Spray Technology, Conf. Proc., ASM International (1989), p. 117.

  6. P. Roumilhac, M. Vardelle, A. Vardelle, and P. Fauchais,Thermal Spray Technology, Conf Proc., ASM International (1989), p. 111.

  7. M. Vardelle, A. Vardelle, P. Fauchais, and M. Boulos,AIChEJ. 34, 567 (1988).

    Google Scholar 

  8. P. Fauchais, M. Vardelle, A. Vardelle, and J. F. Coudert,Metall. Trans. 20B, 263 (1983).

    Google Scholar 

  9. P. Fauchais, P. Roumilhac, and J. F. Coudert,Mater. Res. Soc. Symp. Proc. 190, 227 (1991).

    Google Scholar 

  10. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  11. W. J. Lick and H. W. Emmons,Transport Properties of Helium from 200 to 50,000 K, Harvard University Press, Cambridge, Massachusetts (1965).

    Google Scholar 

  12. S. Popovic and N. Konjevic,Z. Naturforsch. 31a, 1042 (1976).

    Google Scholar 

  13. S. I. Sandier, E. J. Miller, and E. A. Mason, Proc. 5th Symp. on Thermophys. Properties, Newton, Massachusetts, ASME (1970), p.342.

  14. C. F. Knopp and A. B. Cambell,Phys. Fluids 9, 989 (1966).

    Google Scholar 

  15. J. Aubreton and P. Fauchais,Rev. Phys. Appl. 18, 51 (1983).

    Google Scholar 

  16. M. Capitelli,J. Phys. (Paris) 38, C3–227 (1977).

    Google Scholar 

  17. M. Capitelli and V. E. Ficocelli,Rev. Int. Htes Temp. Refract. 14, 195 (1977).

    Google Scholar 

  18. E. A. Mason and S. C. Saxena,Phys. Fluids 1, 361 (1958).

    Google Scholar 

  19. W. B. White, G. B. Dantzig, and S. M. Johnson,J. Chem. Phys. 28, 751 (1958).

    Google Scholar 

  20. ADEP- Banque de données de l'Université et du CNRS. Ed. Direction des Bibliothèques des Musées et de l'Information Scientifique et Technique (1986). (a) B. Pateyron, These de Doctorat es Sciences Physiques, University of Limoges, France, Nb. 21. 1987 (1987). (b) B. Pateyron, J. Aubreton, M. F. Elchinger, and G. Delluc, “Thermochemical equilibria in multicomponent systems on microcomputers,”International Meetings on Phase Equilibrium” Data, Paris, 5–13 September 1985. (c) B. Pateyron, J. Aubreton, M. F. Elchinger, and G. Delluc, “Thermodynamic and transport properties at high temperature: hydrogen plasma and water plasma,” International Meetings on Phase Equilibrium Data, Paris, 5–13 September 1985. (d) M. F. Elchinger, B. Pateyron, G. Delluc, and P. Fauchais, 5–13 September 1985. (d) M. F. Elchinger, B. Pateyron, G. Delluc, and P. Fauchais,” Radiative and transport properties of some nitrogen-oxygen mixtures including air,” Proceeding of 9th International Symposium on Plasma Chemistry, Pugnochiuso, Italy, R. d'Agostino, ed., IUPAC (1989), Vol. 1, p.127. (e) B. Pateyron and G. Delluc,Thermal Plasmas: Fundamentals and Applications, Plenum Press, New York (1992). Appendix 1: Thermodynamic and Transport Properties of a Few Plasma Gases.

  21. C. E. Moore, Atomic energy levels,NBC Circ. 467, Vol. 3 (1958).

    Google Scholar 

  22. K. S. Drellishak, Ph.D. Thesis, Northwestern University (1963).

  23. B. J. McBride and S. Gordon, NASA TN-D-4097 (1967).

  24. G. Herzberg,Spectra of Diatomic Molecules, 2nd edn., Van Nostrand, New York (1950).

    Google Scholar 

  25. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  26. S. Chapman and T. G. Cowling,Mathematical Theory of Non-uniform Gases, Cambridge University Press, London (1964).

    Google Scholar 

  27. R. S. Devoto, Ph.D. Thesis, Stanford University (1965).

  28. C. Gorse, Thèse Sème Cycle, Université de Limoges, France, Nb 75–10 (1975).

  29. C. Bonnefoi, Thèse 3ème Cycle, Université de Limoges, France, Nb (1975).

  30. C. Bonnefoi, Thèse de Docteur ès Sciences Physiques, Université de Limoges, France, Nb 12-1983 (1983).

    Google Scholar 

  31. J. Aubreton, Thèse de Docteur ès-Sciences Physique, Université de Limoges, France, NB 3-1985, (1985).

    Google Scholar 

  32. R. A. Aziz, P. W. Riley, U. Buck, G. Manecke, J. Schleusener, G. Scoles, and U. Valbusa,J. Chem. Phys. 71, 2637 (1979).

    Google Scholar 

  33. G. Brual and S. M. Rothstein,Chem. Phys. Left. 61, 167 (1979).

    Google Scholar 

  34. D. Bassi, M. G. Dondi, F. Tomasini, F. Torello, and U. Valbusa,Phys. Rev. A13, 582 (1976).

    Google Scholar 

  35. V. A. Belov,Teplofiz, Vys. Temps. 5, 37 (1967).

    Google Scholar 

  36. R. S. Devoto and C. P. Li,J. Plasma Phys. 2 (Part. 1), 17 (1968).

    Google Scholar 

  37. I. Amdur and J. E. Jordan,Advances in Chemical Physics 10, J. Ross, ed., Interscience, New York (1966).

  38. T. L. Gilbert and A. C. Wahl,J. Chem. Phys. 44, 1973 (1966).

    Google Scholar 

  39. K. T. Tang and J. P. Toennis,J. Chem. Phys. 66, 1496 (1977).

    Google Scholar 

  40. P. J. Dunlop, C. M. Bignell, W. L. Taylor, and B. A. Meyer,J. Chem. Phys. 87, 3591 (1987).

    Google Scholar 

  41. W. Kolos and L. Wolniewez,J. Chem. Phys.d43, 2429 (1965).

    Google Scholar 

  42. W. Kolos and L. Wolniewez,J. Chem. Phys. 49, 404 (1969).

    Google Scholar 

  43. W. Kolos and L. Wolniewez,J. Chem. Phys. Lett. 24, 457 (1974).

    Google Scholar 

  44. J. T. Vanderslice, S. Weissmann, E. A. Mason, and R. J. Fallon,Phys. Fluids 5, 155 (1962).

    Google Scholar 

  45. R. I. Libofl,Phys. Fluids 2, 40 (1959).

    Google Scholar 

  46. R. S. Devoto,Phys. Fluids 10, 354 (1967).

    Google Scholar 

  47. J. T. Moseley, R. P. Saxon, B. A. Huber, P. C. Cosby, R. Abouaf, and M. Tadjeddine,J. Chem. Phys. 67, 1659 (1977).

    Google Scholar 

  48. H. H. Michels, R. B. Hobbs, and W. A. Wright,J. Chem. Phys. 69, 5151 (1978).

    Google Scholar 

  49. V. Sidis,J. Phys. B 5, 517 (1972).

    Google Scholar 

  50. H. Inouye and K. Noda,J. Chem. Phys. 72, 3695 (1980).

    Google Scholar 

  51. P. J. Kuntz and A. C. Roach,J. Chem. Soc. Faraday Trans. II 68, 259 (1972).

    Google Scholar 

  52. J. B. Hasted,Physics of Atomic Collisions, Butterworths, London (1964).

    Google Scholar 

  53. B. L. Moiseiwitsch,Proc. Phys. Soc. A69, 653 (1956).

    Google Scholar 

  54. E. A. Mason and J. T. Vanderslice,J. Chem. Phys. 29, 361 (1958).

    Google Scholar 

  55. P. N. Reagan, J. C. Browne, and F. A. Matsen,Phys. Rev. 132, 304 (1963).

    Google Scholar 

  56. H. M. Hulburt and J. O. Hirschfelder,J. Chem. Phys. 35, 1901 (1961).

    Google Scholar 

  57. J. M. Peck,J. Chem. Phys. 43, 3004 (1965).

    Google Scholar 

  58. Y. Itikawa,At. Data Nucl. Data Tables 14, 1 (1974).

    Google Scholar 

  59. Y. Itikawa,At. Data Nucl. Data Tables 21, 69 (1978).

    Google Scholar 

  60. L. S. Frost and A. V. Phelps,Phys. Rev. 136, 1538 (1964).

    Google Scholar 

  61. P. Kupta and S. P. Khare,J. Chem. Phys. 68, 2193 (1978).

    Google Scholar 

  62. Periodic Chart of the Atoms, rev. edn., Sargent-Welch Scientific Company, Chicago (1959).

  63. R. S. Devoto,Phys. Fluids 9, 1230 (1966).

    Google Scholar 

  64. K. S. Yun, S. Weissmann, and E. A. Mason,Phys. Fluids 5, 672 (1962).

    Google Scholar 

  65. R. S. Brokaw and J. N. Butler,J. Chem. Phys. 32, 1005 (1968).

    Google Scholar 

  66. C. R. Wilke,J. Chem. Phys. 18, 517 (1950).

    Google Scholar 

  67. E. Bourdin, P. Fauchais, and M. Boulos,Int. J. Heat Mass Transfer 26, 567 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pateyron, B., Elchinger, M.F., Delluc, G. et al. Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. I: Properties of the mixtures. Plasma Chem Plasma Process 12, 421–448 (1992). https://doi.org/10.1007/BF01447253

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447253

Key words

Navigation