Skip to main content
Log in

Ultrastructural Pathology of Degenerating “Dark” Granule Cells in the Hippocampal Dentate Gyrus of Adrenalectomized Rats

  • Published:
Acta Biologica Hungarica Aims and scope Submit manuscript

Abstract

Adrenalectomy-evoked delayed degeneration and death of granule cells in the hippocampal dentate gyrus (DG) of the rat brain were studied by means of electron microscopy and a recently elaborated silver method that selectively stains the “dark”, collapsed neurons in a Golgi-like manner. At the light microscopic level, the silver technique revealed degenerating granule cells located exclusively in the dentate gyrus; other glucocorticoid receptor-containing regions of the brain were not affected. The silver-stained cell bodies were shrunken, most of the dendrites had a beaded appearance, and the stained axons could be traced along their route to the CA3 pyramidal neurons of the hippocampus. The analysis of 2.5 µm thick Epon-embedded sections stained with toluidine blue revealed hyperchromatic, dark granule neurons and their remains and a heavy glial activity in the vicinity of collapsing neuronal profiles. At the ultrastructural level, early and late stages of neuronal degeneration were observed. The early phase was characterized by markedly increased electron density, a massive shrinkage of the whole somato-dendritic domain, vacuolization of mitochondria, swelling of the nucleolus and condensation of the nuclear chromatin. In the late stage, subcellular organelles were hardly recognizable due to the extremely high electron density and dramatic shrinkage of the cytoplasm. These profiles exhibited disintegration of the cellular organelles and loss of their afferents. Concomitantly, disintegration of granule cell dendrites (clasmatodendrosis) and lifting of “dark” mossy fibers from cell bodies and dendrites of CA3 pyramidal neurons were observed. In the latter cells, this partial denervation caused no apparent signs of ultrastructural alterations. Proliferation of astrocytes and microglial cells was also obvious as they engulfed and eliminated the degenerating neuronal elements. Degenerating neurons frequently occurred adjacent neurons with normal morphology. These morphological features indicate that the delayed degeneration of hippocampal granule cells following adrenalectomy might proceed through a cytoskeletal collapse terminating in cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloe, L. (1989) Adrenalectomy decreases nerve growth factor in young rat hippocampus. Proc. Natl. Acad. Sci. USA 86, 5636–5640.

    Article  CAS  Google Scholar 

  2. Andersen, P. (1975) Organization of hippocampal neurons and their interconnections. In: Issacson, R. L., Pribram, K. H. (eds): The Hippocampus. Plenum, New York, pp. 155–175.

    Chapter  Google Scholar 

  3. Evans, R. M., Arizza, J. F. (1990) A molecular framework for the actions of glucocorticoid hormones in the central nervous system. Neuron 2, 1105–1112.

    Article  Google Scholar 

  4. Finnie, J. W., O’Shea, J. D. (1988) Pathological and pathogenic changes in the central nervous system of guinea pigs given tunicamycin. Acta Neuropathol. 75, 411–421.

    Article  CAS  Google Scholar 

  5. Fuxe, K., Wikström, A. C., Okret, S., Aganati, L. F., Härfstrand, F., Yu, Z. Y., Granholm, L., Zoli, M., Vale, W., Gustafsson, J. A. (1985) Mapping of the glucocorticoid receptor immunoreactive neurons in the tel- and diencephalon using monoclonal antibody against rat liver glucocorticoid receptors. Endrocrinology 117, 1803–1812

    Article  CAS  Google Scholar 

  6. Fuxe, K., Cintra, A., Härfstrand, A., Aganati, L. F., Kalia, M., Zoli, M., Wikström, A.-S., Okret, S., Aronsson, M., Gusfafsson, J. A. (1987) Central glucocorticoid receptor immuno-reactive neurons: new insights into the endocrine regulation of the brain. Ann. N.Y. Acad. Sci. 512, 362–393.

    Article  CAS  Google Scholar 

  7. Gallyas, F., Wolff, J. R., Böttcher, H., Záborszky, L. (1980) A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous tissue. Stain Technol. 55, 299–306.

    Article  CAS  Google Scholar 

  8. Gallyas, F., Guldner, F. H., Zoltay, G., Wolff, J. R. (1990) Golgi-like demonstration of dark neurons with an argyrophil III method for experimental neuropathology. Acta Neuropathol. 79, 620–628.

    Article  CAS  Google Scholar 

  9. Gallyas, F., Zoltay, G., Dames, W. (1992) Formation of “dark” argyrophilic neurons of various origin proceeds with a common mechanism of biophysical nature (a novel hypothesis). Acta Neuropathol. 83, 386–393.

    Article  CAS  Google Scholar 

  10. Garcia, J. H., Kalimo, H., Kamygo, Y. (1977) Cellular events during partial cerebral ischemia. Electron microscopy of feline cerebral cortex after middle cerebral artery occlusion. Virchows Arch. B. 25, 191–206.

    CAS  Google Scholar 

  11. Gould, E., Woolley, C. S., McEwen, B. S. (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37, 367–375.

    Article  CAS  Google Scholar 

  12. Hall, E., McCall, H., Chase, R., Yonkers, P., Braughler, M. A. (1987) Nonglucocorticoid steroid analog of methyl-prednisolone duplicates its high-dose pharmacology in models of central nervous system trauma and neuronal membrane damage. J. Pharmacol. Exp. Ther. 242, 137–142.

    CAS  PubMed  Google Scholar 

  13. Jaarsma, D., Postema, F., Korf, J. (1992) Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: A silver impregnation study. Hippocampus 2, 143–150.

    Article  CAS  Google Scholar 

  14. Jenkins, L. W., Povliscock, J. T., Lewelt, W., Miller, J. D., Becker, P. D. (1981) The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol. 55, 205–220.

    Article  CAS  Google Scholar 

  15. Kalimo, H., Auer, R. N., Siesjö, B. K. (1985) The temporal evolution of hypoglycemic brain damage III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol. 67, 37–50.

    Article  CAS  Google Scholar 

  16. McEwen, B. S., Weiss, J. M., Schwartz, L. S. (1968) Selective retention of corticosterone by limbic structure in the rat brain. Nature 220, 911–912.

    Article  CAS  Google Scholar 

  17. McEwen, B. S., De Kloet, E. R., Rostene, W. (1986) Adrenal steroid receptors and action in the nervous system. Physiol. Rev. 66, 1121–1188.

    Article  CAS  Google Scholar 

  18. McEwen, B. S., Gould, E. (1990) Adrenal steroids influences on the survival of hippocampal neurons. Biochem. Pharmacol. 40, 2393–2402.

    Article  CAS  Google Scholar 

  19. McNeill, T. H., Masters, J. N., Fich, C. B. (1991) Effect of chronic adrenalectomy on neuron loss and distribution of sulfated glycoprotein-2 in the dentate gyrus of prepubertal rats. Exp. Neurol. 111, 140–144.

    Article  CAS  Google Scholar 

  20. Mihály, A., Joó, F., Szente, M. (1983) Neuropathological alterations in the neocortex of rats subjected to focal aminopyridine seizures. Acta Neuropathol. 61, 85–94.

    Article  Google Scholar 

  21. Laatsch, R. H., Cowan, W. M. (1966) Electron microscopic studies of the dentate gyrus of the rat. I. Normal structure with special reference to synaptic organization. J. Comp. Neurol. 128, 359–396.

    Article  CAS  Google Scholar 

  22. Lin, C.-S., Polsky, K., Nadler, J. V., Crain, B. J. (1990) Selective neocortical and thalamic death in the gerbil after transient ischemia. Neuroscience 35, 289–299.

    Article  CAS  Google Scholar 

  23. Liposits, Zs., Sherman, D., Phelix, C., Paull, W. K. (1986) A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens. Histochemistry 85, 95–106.

    Article  CAS  Google Scholar 

  24. Liposits, Zs., Uht, R. M., Harrison, R. W., Gibbs, F. P., Paull, W. K., Bohn, M. C. (1987) Ultrastructural localization of glucocorticoid receptor (GR) in hypothalamic paraventricular neurons synthesizing corticotorpin releasing factor (CRF). Histochemistry 87, 407–412.

    Article  CAS  Google Scholar 

  25. Pittman, R., Oppenheim, R. W. (1979) Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J. Comp. Neurol. 187, 425–446.

    Article  CAS  Google Scholar 

  26. Reul, J. M. H., De Kloet, E. R. (1985) Two receptor systems for glucocorticoids in the rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511.

    Article  CAS  Google Scholar 

  27. Richter, C. P. (1941) Sodium chloride and dextrose appetite of untreated and treated adrenalectomized rats. Endocrinology 29, 115–125.

    Article  CAS  Google Scholar 

  28. Sapolsky, R., Puslinelli, W. (1985) Glucocorticoids potentiate ischemic injury to therapeutic implications. Science 229, 1397–1399.

    Article  CAS  Google Scholar 

  29. Sapolsky, R. M., Krey, L. C., McEwen, B. S. (1985) Prolonged glucocorticoid exposure reduces neuron number: implications for aging. J. Neurosci. 5, 1222–1227.

    Article  CAS  Google Scholar 

  30. Sapolsky, R., M., Meaney, M. J. (1986) Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress responsive period. Brain Res. Rev. 11, 65–76.

    Article  CAS  Google Scholar 

  31. Sapolsky, R. M., Krey, L. C., McEwen, B. S. (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev. 7, 284–301.

    Article  CAS  Google Scholar 

  32. Sloviter, R. S., Valiquette, O. G., Abrams, G. M., Ronk, E. C., Sollas, A. I., Paul, L. A., Neubort, S. L. (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243, 535–538.

    Article  CAS  Google Scholar 

  33. Sloviter, R. S., Sollas, A. L., Dean, E., Neubort, S. (1993) Adrenalectomy induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. J. Comp. Neurol. 330, 324–336.

    Article  CAS  Google Scholar 

  34. Sloviter, R. S., Dean, E., Neubort, S. (1993) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J. Comp. Neurol. 33, 337–351.

    Article  Google Scholar 

  35. Söderfeldt, B., Kalimo, H., Olsson, Y., Siesjo, B. K. (1981) Pathogenesis of brain lesion caused by experimental epilepsy. Light and electron microscopic changes in the rat cortex following bicucculine-induced status epilepticus. Acta Neuropathol. 54, 219–231.

    Article  Google Scholar 

  36. Van Eekelen, J. A. M., Jiang, W., De Kloet, E. R., Bohn, M. C. (1988) Distribution of mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. J. Neurosci. Res. 21, 88–94.

    Article  Google Scholar 

  37. Vicedomini, J. P., Nonneman, A. J., De Kosky, S. T., Scheff, S. W. (1985) Perinatal glucocorticoids alter dentate gyrus electrophysiology. Brain. Res. Bull. 15, 111–116.

    Article  CAS  Google Scholar 

  38. Vicedomini, J. P., Nonnenman, A. J., De Kosky, S. T., Scheff, S. W. (1986) Perinatal glucocorticoids disrupt learning: a sexual dimorphic response. Physiol. Behav. 36, 145–149.

    Article  CAS  Google Scholar 

  39. Woolley, C. S., Gould, E., Sakai, R. R., Spencer, R. L., McEwen, B. S. (1991) Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res. 554, 312–315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liposits, Z., Kalló, I., Hrabovszky, E. et al. Ultrastructural Pathology of Degenerating “Dark” Granule Cells in the Hippocampal Dentate Gyrus of Adrenalectomized Rats. BIOLOGIA FUTURA 48, 173–187 (1997). https://doi.org/10.1007/BF03543188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03543188

Keywords

Navigation