Skip to main content
Log in

Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A silver method is proposed for the selective, well-contrasted and reproducible demonstration of “dark” neurons in frozen, vibratome and paraffin sections cut at a thickness of 5 to 200 μm from aldehyde-fixed brains. The Golgi-like staining of the dendrites enables asorting of “dark” neurons according to characteristic neuron classifications. The staining procedure includes an esterification with 1-propanol, a treatment with diluted acetic acid and development. The esterification strongly increases the argyrophilia of both “dark” neurons and mitochondria. Unwanted co-staining of mitochondria is suppressed by the acetic acid treatment, while a special developer is used to render the staining controllable. The applicability of the method to experimental neuropathology is demonstrated by Golgi-like staining of “dark” neurons in rat brains exposed, before transcardial perfusion-fixation and delayed autopsy, to various pathological conditions including ischemia, hypoglycemia, trauma, status epilepticus, deafferentation and poisoning with kainic acid, colchicine and sodium azide, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agardh CD, Kalimo H, Olsson Y, Siesjö BK (1981) Reply to the remarks by JB Brierley and AW Brown. Acta Neuropathol (Berl) 55: 323–325

    Google Scholar 

  2. Atillo A, Söderfeldt B, Kalimo H, Olsson Y, Siesjö BK (1983) Pathogenesis of brain lesions caused by experimental epilepsy. Light and electron-microscopic changes in the rat hippocampus following bicucculline-induced status epilepticus. Acta Neuropathol (Berl) 59: 11–24

    Google Scholar 

  3. Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64: 177–191

    Google Scholar 

  4. Ben-Ari Y, Tremblay E, Ottersen OP, Meldrum BS (1980) The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid. Brain Res 191: 79–97

    Google Scholar 

  5. Brierley JB, Brown AW (1981) Remarks on the papers by C-D Agardh et al/H Kalimo et al. “Hyperglycemic brain injury, I, II”. Acta Neuropathol (Berl) 55: 319–322

    Google Scholar 

  6. Cammermeyer J (1960) A critique of neuronal hyperchromatosis. J Neuropathol Exp Neurol 19: 141–142

    Google Scholar 

  7. Cammermeyer J (1960) The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pycnosis. Exp Neurol 2: 379–405

    Google Scholar 

  8. Cammermeyer J (1961) An evaluation of the significance of “dark” neuron. Ergeb Anat Entwicklungsgesch 36: 1–61

    Google Scholar 

  9. Cammermeyer J (1961) The importance of avoiding “dark” neurons in experimental neuropathology. Acta Neuropathol (Berl) 1: 245–270

    Google Scholar 

  10. Cammermeyer J (1975) Histochemical phospholipid reaction in ischemic neurons as an indication of exposure to post-mortem trauma. Exp Neurol 49: 251–271

    Google Scholar 

  11. Cammermeyer J (1978) Is the solitary dark neuron a manifestation of post mortem trauma to the brain inadequately fixed by perfusion? Histochemistry 56: 97–115

    Google Scholar 

  12. Cammermeyer J (1979) Argentophil neuronal perikarya and neurofibrils induced by post-mortem trauma and hypertonic perfusates. Acta Anat 105: 9–24

    Google Scholar 

  13. Clarke PGH (1980) Golgi-like staining with haematoxilin. Neurosci Lett 18: 31–36

    Google Scholar 

  14. Clarke PGH, Nussbaumer JC (1987) A stain for ischemic or excessively stimulated neurons. Neuroscience 23: 969–979

    Google Scholar 

  15. Desclin JC, Escubi J (1974) Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res 77: 349–364

    Google Scholar 

  16. Finnie JW, O'Shea JD (1988) Pathological and pathogenic changes in the central nervous system of guinea pigs given tunicamycin. Acta Neuropathol (Berl) 75: 411–421

    Google Scholar 

  17. Gallyas F (1980) Chemical nature of the first products (nuclei) of the aryrophil staining. Acta Histochem 67: 145–158

    Google Scholar 

  18. Gallyas F (1980) Determination of the development time for the characterization of nucleus formation in the argyrophil staining. Acta Histochem 67: 1–5

    Google Scholar 

  19. Gallyas F (1982) Physico-chemical mechanism of the argyrophil III reaction. Histochemistry 74: 409–421

    Google Scholar 

  20. Gallyas F (1982) Equation of the mass-time relationship of the argyrophil I and III reactions. Histochemistry 74: 423–433

    Google Scholar 

  21. Gallyas F, Wolff JR, Lohner H (1989) An argyrophil III method for the selective demonstration of mitochondria in aldehyde-fixed rat brain. J Neurosci Methods (in press)

  22. Goldschmidt RB, Steward D (1980) Preferential neurotoxicity of colchicine for granule cells of the dentate gyrus of adult rat. Proc Natl Acad Sci USA 77: 3047–3051

    Google Scholar 

  23. Griffiths THS, Evans MC, Meldrum BS (1983) Intracellular calcium accumulation in rat hippocampus during seizures induced by bicucculline or l-allylglycine. Neuroscience 10: 385–395

    Google Scholar 

  24. Güldner FH, Gallyas F, Wolff JR (1978) Spezifische Neuronfärbung im Rattenhirn nach Stimulation und Läsion. Verh Anat Ges 72: 401

    Google Scholar 

  25. Hamilton BF, Gould DH (1987) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol (Berl) 72: 286–297

    Google Scholar 

  26. Hedreen JC, Chalmers JP (1972) Neuronal degeneration in rat brain induced by 6-hydroxydopamine. A histological and biochemical study. Brain Res 47: 1–36

    Google Scholar 

  27. Heimer L, Kalil R (1978) Rapid transneuronal degeneration and death of cortical neurons following removal of the olfactory bulb. J Comp Neurol 178: 559–610

    Google Scholar 

  28. Ingvar M, Morgan PF, Auer RN (1988) The nature and timing of excitotoxic neuronal necrosis in the cerebral cortex, hippocampus and thalamus due to flurothyl-induced status epilepticus. Acta Neuropathol (Berl) 75: 362–369

    Google Scholar 

  29. Jenkins LW, Povlishock JT, Lewelt W, Miller JP, Becker DP (1981) The role of postichmic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol (Berl) 55: 205–220

    Google Scholar 

  30. Johnson JE (1975) The occurrence of dark neurons in the normal and deafferentated lateral vestibular nucleus in the rat: observations by light and electron microscopy. Acta Neuropathol (Berl) 31: 117–127

    Google Scholar 

  31. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following ischemia. Acta Neuropathol (Berl) 62: 201–208

    Google Scholar 

  32. Kleihues P, Kiessling M, Thilmann R, Xie Y, Uozumi A, Volk B (1986) Resitance to hypoglycemia of cerebellar transplants in the rat forebrain. Acta Neuropathol (Berl) 72: 23–28

    Google Scholar 

  33. Környey S (1963) Patterns of CNS vulnerability in CO, cyanide and other poisoning. In: Schade JP, McMenemey WH (eds) Selective vulnerability of the nervous system in hypoxemia. Blackwell, Oxford, pp 165–176

    Google Scholar 

  34. Mihály A, Joo F, Szente M (1983) Neuropathological alterations in the neocortex of rats subjected to focal aminopyridine seizures. Acta Neuropathol (Berl) 61: 85–94

    Google Scholar 

  35. Nedergaard M (1987) Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol (Berl) 73: 267–274

    Google Scholar 

  36. Palay SL, McGee-Russel SM, Gordon S, Grillo MA (1962) Fixation of neural tissue for electron microscopy by perfusion with solution of osmium tetroxide. J Cell Biol 12: 385–410

    Google Scholar 

  37. Pulsinelli WA Brierley JB (1979) New model of bilateral hemispheric ischemia in the unanaesthetized rat. Stroke 10: 267–272

    Google Scholar 

  38. Purpura DP, Gonzalez-Monteagydo O (1960) Acute effects of methoxypyridoxine on hippocampal end blade neurons; an experimental study of “special pathoclisis” in the cerebral cortex. J Neuropathol Exp Neurol 19: 421–432

    Google Scholar 

  39. Queiroz LS, Eduardo RMP (1977) Occurrence of dark neurons in living mechanically injured rat neocortex. Acta Neuropathol (Berl) 38: 45–48

    Google Scholar 

  40. Schnakenburg K (1971) Licht-und elektronenmikroskopische Untersuchungen der Hirngewebsveränderungen bei akuter experimenteller Sauerstoffvergiftung. Virchows Arch [A] 8: 230–242

    Google Scholar 

  41. Sokrab TW, Johansson BB, Kalimo H, Olsson Y (1988) A transient hypertensive opening of the blood-brain barrier can lead to brain damage changes in rats subjected to aortic compression. Acta Neuropathol (Berl) 75: 557–565

    Google Scholar 

  42. Solohuddin TS, Kalimo H, Johnsson BA, Olsson Y (1988) Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating long-lasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol (Berl) 76: 1–10

    Google Scholar 

  43. Sperk G, Lassmann H, Baran H, Kish SJ, Seitelberger F, Hornykiewicz O (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10: 1301–1315

    Google Scholar 

  44. Stensaas SS, Edwards CQ, Stensaas LJ (1972) An experimental study of hyperchromic nerve cells in the cerebral cortex. Exp Neurol 36: 472–487

    Google Scholar 

  45. Switzer RC III (1976) Neural argyrophilia induced by puromycin. A directed Golgi-like method. Neurosci Lett 2: 301–305

    Google Scholar 

  46. Tremblay E, Berger M, Nitecka L, Cavalheiro E, Ben-Ari Y (1984) A multidisciplinary study of folic acid neurotoxicity: interactions with kainate binding sites and relevance to the aethiology of epilepsy. Neuroscience 12: 569–589

    Google Scholar 

  47. Zaczek R, Simonton S, Coyle JT (1980) Local and distant neuronal degeneration following intrastritial injection of kainic acid. J Neuropathol Exp Neurol 39: 245–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallyas, F., Güldner, F.H., Zoltay, G. et al. Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. Acta Neuropathol 79, 620–628 (1990). https://doi.org/10.1007/BF00294239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294239

Key words

Navigation