Skip to main content
Log in

Generation of marker-free Bt transgenicindica rice and evaluation of its yellow stem borer resistance

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borerScirpophaga incertulas (Lepidoptera: Pyralidae). The transgenicindica rice harbours a translational fusion of 2 differentBacillus thuringiensis (Bt) genes, namelycry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an eliteindica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the markerhpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3∶1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afolabi AS, 2007. Status of clean gene (selection marker-free) technology. Afr J Biotechnol 6: 2910–2923.

    CAS  Google Scholar 

  • Afolabi AS, Worland B, Snape JW, Vain P, 2005. Novel pGreen/pSoup dual-binary vector system in multiple T-DNA co-cultivation as a method of producing marker-free (clean gene) transgenic rice (Oryza sativa L) plant. Afr J Biotechnol 4: 531–540.

    CAS  Google Scholar 

  • Afolabi AS, Worland B, Snape JW, Vain PA, 2004. Large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 4: 815–826.

    Article  CAS  Google Scholar 

  • Alam MF, Datta K, Abrigo E, Vasquez NA, Senadhira D, Datta SK, 1998. Production of deepwater transgenic indica rice plants expressing aBacillus thuringiensis cry1Ab gene with enhanced resistance to yellow stem borer. Plant Sci 135: 25–30.

    Article  Google Scholar 

  • Alinia F, Ghareyazie B, Rubia L, Bennet J, Cohen MB, 2000. Effect of plant age, larval age and fertilizer treatment on resistance of a Cry1Ab-transformed aromatic rice to lepidopterous stem borers and foliage feeders. J Econ Entomol 93: 484–493.

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, et al. 2005. Particlebombardmentand the genetic enhancement of crops: myths and realities. Mol Breed 15: 305–327.

    Article  Google Scholar 

  • Artelt P, Grannemann R, Stocking C, Friel J, Bartsch J, Hauser H, 1991. The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Wang Q, Chu C, 2008. Excision of a selective marker in transgenic rice using a novelCre/loxP system controlled by a floral specific promoter. Transgenic Res 17: 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  • Bohorova N, Frutos R, Royer M, Estañol P, Pacheco M, Rascón Q, et al. 2001. Novel syntheticBacillus thuringiensis cry1B gene and thecry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fallarmywormin transgenic tropical maize. Theor Appl Genet 103: 817–826.

    Article  CAS  Google Scholar 

  • Bradford MM, 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 72: 248–254.

    Article  CAS  Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guider-doni E, 2002. Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104: 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, et al. 1998. Expression and inheritance of multiple genes in rice plants. Nat Biotechnol 16: 1060–1064.

    Article  CAS  PubMed  Google Scholar 

  • Cheng XY, Sardana R, Kaplan H, Altosar I, 1998.Agrobacterium-transformed rice plants expressing syntheticCry1A(b) andCrty1A(c) gene are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95: 2767–2772.

    Article  CAS  PubMed  Google Scholar 

  • Christou P, Ford TL, 1995. Parameters influencing stable transformation of rice immature embryos and recovery of transgenic plants using electric discharge particle acceleration. Ann Bot 75: 407–413.

    Article  Google Scholar 

  • Cohen MB, Gould F, Bentur JS, 2000.Bt rice: practical steps to sustainable use. Int Rice Res Notes 25: 4–10.

    Google Scholar 

  • Darbanil B, Eimanifar A, Stewart CN, Camargo WN, 2007. Methods to produce marker-free transgenic plants. Biotechnol J 2: 83–90.

    Article  CAS  Google Scholar 

  • Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N, et al. 1998. Constitutive and tissue-specific differential expression of thecry1A(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97: 20–30.

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo K, Yamada S, Komamin A, 2001. Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20: 383–392.

    Article  CAS  Google Scholar 

  • Frutos R, Rang C, Royer M, 1999. Managing insect resistance to plants producingBacillus thuringiensis toxins. Crit Rev Biotechnol 19: 227–276.

    Article  CAS  Google Scholar 

  • Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, et al. 2000. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA, 2008. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146: 881–887.

    Article  CAS  PubMed  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, dePalma JM, Cohen MB, Khush GS, Bennett J, 1997. Enhanced resistance to two stem borers in an aromatic rice containing a syntheticcry1A(b) gene. Mol Breed 3: 401–414.

    Article  CAS  Google Scholar 

  • Goldsbrough PA, Lastrella CN, Yoder JI, 1993. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11: 1286–1292.

    CAS  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ, 1996. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15: 500–505.

    Article  CAS  Google Scholar 

  • Hagh ZG, Rahnama H, Panahandeh J, Rouz BBK, Jafari KMA, Mahna N, 2009. Green-tissue-specific, C4-PEPC-promoter-driven expression of CryAb makes transgenic potato plants resistant to tuber moth (Phthorimae operculella, Zeller). Plant Cell Rep 28: 1869–1879.

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T, 1994. Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Ho NH, Baisakh N, Oliva N, Datta K, Frutos R, Datta SK, 2006. Translational fusion hybridBt genes confer resistance against yellow stem borer in transgenic elite Vietnamese rice (Oryza sativa L.) cultivars. Crop Sci 46: 781–789.

    Article  CAS  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH, 2004. Generation of marker-free transgenic maize by regular two-borderAgrobacterium transformation vectors. Transgenic Res 5: 451–461.

    Article  Google Scholar 

  • Khan ZR, Listinger JA, Barrion AT, Villanueva FFD, Fernandez NJ, Taylor LD, 1991. World bibliography of rice stem borer, 1794–1990. International Rice Research Institute, Manilla, Philippines.

    Google Scholar 

  • Khanna H, Raina SK, Srinivasulu, Kumar K, 1997. Biolistic transformation of eliteindica rice (Oryza sativa L.) cultivars through semi-solid and liquid medium selection systems. J Plant Biochem Biotechnol 6: 75–80.

    CAS  Google Scholar 

  • Khanna HK, Raina SK, 1999.Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust J Plant Physiol 26: 311–324.

    Article  CAS  Google Scholar 

  • Khanna HK, Raina SK, 2002. Eliteindica transgenic rice plants expressing modifiedcryIA(c) endotoxin ofBacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 4: 411–423.

    Article  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P, 1988. Stable genetic transformation of intactNicotiana cells by particle bombardment projectiles. Proc Natl Acad Sci USA 85: 8502–8505.

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T, 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated byAgrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, et al. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/Technol 11: 194–200.

    Article  CAS  Google Scholar 

  • Kumar S, Arul L, Talwar D, Raina SK, 2006. PCR amplification of minimal gene expression cassettes: an alternative, low cost and easy approach to ‘clean DNA’ transformation. Curr Sci 91: 930–934.

    CAS  Google Scholar 

  • Kumar S, Chandra A, Pandey KC, 2008. Bt transgenic crop: An environment friendly insect-pest management strategy. J Environ Biol 29: 641–653.

    CAS  PubMed  Google Scholar 

  • Lange M, Vincze E, Moller MG, Holm PB, 2006. Molecular analysis of transgene and vector backbone integration into the barley genome followingAgrobacterium-mediated transformation. Plant Cell Rep 8: 815–820.

    Article  CAS  Google Scholar 

  • Lee L-Y, Gelvin SB, 2008. T-DNA binary vectors and systems. Plant Physiol 146: 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA, 2002. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9: 231–244.

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I, 2001. Genetic engineering approach to improve the biodiversity and the level of iron in rice grains. Theor Appl Genet 102: 392–397.

    Article  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, et al. 2007. ‘GM-gene-deleter’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Maqbool SB, Christou P, 1999. Multiple traits of agronomic importance in transgenicindica rice plants: analysis of transgene integration pattern, expression levels and stability. Mol Breed 5: 471–480.

    Article  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P, 2001. Expression of multiple insecticidal genes confirms resistance against a range of different rice pests. Mol Breed 7: 85–93.

    Article  CAS  Google Scholar 

  • Mellon M, Rissler J, 1998. Now or never: serious new plants to save a natural pest control. Cambridge, MA: Union of Concerned Scientists.

    Google Scholar 

  • Miki B, McHugh S, 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107: 193–232.

    Article  CAS  PubMed  Google Scholar 

  • Mlynarova L, Conner AJ, Nap JP, 2006. Directed microspore specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, et al. 1997. Transgenic eliteindica rice plants expressing CryIAc delta-endotoxin ofBacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA 94: 2111–2116.

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A, 1994. Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Palmiter RD, Brinster RL, 1986. Germline transformation of mice. Ann Rev Genet 20: 465–499.

    Article  CAS  PubMed  Google Scholar 

  • Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA, 2003. Genetic engineering of crop plants for insect resistance. Cur Sci 84: 321–329.

    Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K, 1996. Transgenic plant production mediated byAgrobacterium inindica rice. Plant Cell Rep 15: 727–730.

    Article  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernard J, Visser R, Mooibroek H, 2003. Transgene organization in potato after particle bombardment-mediated (co)transformation using plasmid and gene cassettes. Transgenic Res 12: 461–423.

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT, 2002. Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Ann Rev Entomol 47: 845–881.

    Article  CAS  Google Scholar 

  • Shi N-N, He G-Y, Li K, Wang H-Z, Chen G-P, Xu Y, 2007. Transferring a gene expression cassette lacking the vector backbone sequences of the 1Ax1 high molecular weight glutenin subunit into two Chinese hexaploid wheat genotypes. Agri Sci China 6: 381–390.

    CAS  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z, 2005. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Tang KX, Tinjuangjun P, Xu Y, Sun XF, Gatehouse JA, Ronald PC, 1999. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208: 552–563.

    Article  CAS  Google Scholar 

  • Teng PS, Revilla IM, 1996. Technical issues in using crop loss for research prioritization. In: Evenson RE et al. eds. Rice research in Asia: Progress and priorities. CAB International in association with the International Rice Research Institute, Wallingford, UK. 261–275.

    Google Scholar 

  • Tu J, Datta K, Khush GS, Zhang Q, Datta SK, 2000a. Field performance ofXa21 transgenicindica rice (Oryza sativa L.), IR72. Theor Appl Genet 101: 15–20.

    Article  CAS  Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, et al. 2000b. Field performance of transgenic elite commercial hybrid rice expressingBacillus thuringiensis -endotoxin. Nat Biotechnol 18: 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  • Vain P, Afolabi AS, Worland B, Snape JW, 2003. Transgene behaviour in population of transformed plants using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107: 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI, 2006. Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25: 807–814.

    Article  CAS  PubMed  Google Scholar 

  • Wenck A, Czako M, Kanevski I, Marton L, 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector duringAgrobacterium-mediated transformation. Plant Mol Biol 34: 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Xia ZH, Li XB, Chen CY, Fan HK, Jiang GH, Zhu LH, Zhai WX, 2006. Generation of selectable marker-free and vector backbone sequence-free Xa21 transgenic rice. Chin J Biotechnol 2: 204–210.

    Google Scholar 

  • Yao Q, Cong L, Wang YS, Chen MJ, Yang GX, 2006. Inheritance of the foreign gene cassettes lacking vector backbone sequences. Hereditas (Beijing) 28: 695–698.

    CAS  Google Scholar 

  • Zhao Y, Qian Q, Wang H-Z, Huang D-N, 2007a. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Develop Biol Plant 43: 328–334.

    Article  CAS  Google Scholar 

  • Zhao Y, Qian Q, Wang H-Z, Huang D-N, 2007b. Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J Genet Genom 34: 824–835.

    Article  CAS  Google Scholar 

  • Zubko E, Scutt C, Meyer P, 2000. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18: 442–445.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Arul, L. & Talwar, D. Generation of marker-free Bt transgenicindica rice and evaluation of its yellow stem borer resistance. J Appl Genet 51, 243–257 (2010). https://doi.org/10.1007/BF03208854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208854

Keywords

Navigation