Skip to main content
Log in

Protein transport and compartmentation in yeast

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transportvia the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organismSaccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dol:

dolichyl (2,3-dihydropolyprenyl)

ER:

endoplasmic reticulum

NEM:

N-ethylmaleimide

SDS:

sodium dodecyl sulfate

ppαF:

pre-pro-α-factor

ppKT:

pre-pro-killer toxin

References

  • Achstetter T., Wolf D.H.: Hormone processing and membrane-bound proteinases in yeast.EMBO J.4, 173–177 (1985).

    PubMed  CAS  Google Scholar 

  • Achstetter T., Franzusoff A., Field C., Schekman R.:SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus.J.Biol.Chem.263, 11711–11717 (1988).

    PubMed  CAS  Google Scholar 

  • Adams A.E.M., Pringle J.R.: Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutantSaccharomyces cerevisiae.J.Cell Biol.98, 934–945 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Addison R.: Secretory protein translocation in aNeurospora crassa in vitro system. Hydrolysis of a nucleotide triphosphate is required for post-translational translocation.J.Biol.Chem.262, 17031–17037 (1987).

    PubMed  CAS  Google Scholar 

  • Addison R.: Translocation of a fragment of invertase across microsomal vesicles isolated fromNeurospora crassa requires the hydrolysis of a nucleoside triphosphate.J.Biol.Chem.263, 14281–14287 (1988).

    PubMed  CAS  Google Scholar 

  • Ahmad M., Bussey H.: Yeast arginine permease: nucleotide sequence of theCAN1 gene.Curr.Genet.10, 587–592 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Allison D.S., Schatz G.. Artificial mitochondrial presequences.Proc.Nat.Acad.Sci. USA83, 9011–9015 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Ammerer G., Hunter C.P., Rothman J.H., Saari G.C., Valls L.A., Stevens T.H.:PEP4 gene ofSaccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors.Mol.Cell Biol.6, 2490–2499 (1986).

    PubMed  CAS  Google Scholar 

  • Anderegg R.J., Betz R., Carr S.A., Crabb J.W., Duntze W.: Structure ofSaccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component.J.Biol.Chem.263, 18236–18240 (1988).

    PubMed  CAS  Google Scholar 

  • Attardi G.A., Schatz G.: Biogenesis of mitochondria.Ann.Rev.Cell Biol.4, 289–333 (1988).

    PubMed  CAS  Google Scholar 

  • Baker D., Hicke L., Rexach M., Schleyer M., Schekman R.: Reconstitution ofSEC gene product-dependent intercompartmental protein transport.Cell54, 335–344 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis V.A., Johnson L.M., Emr S.D.: Isolation of yeast mutants defective in protein targeting to the vacuole.Proc.Nat.Acad.Sci. USA83, 9075–9079 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis V.A., Malehorn D.E., Emr S.D., Greene R.: TheSaccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex.J.Cell Biol.108, 1271–1281 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Banta L.M., Robinson J.S., Klionsky D.J., Emr S.D.: Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting.J.Cell Biol.107, 1369–1383 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Barbacid M.: Ras genes.Ann.Rev.Biochem.56, 779–827 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Betz R., Crabb J.W., Meyer H.E., Wittig R., Duntze W.: Amino acid sequences of a-factor mating peptides fromSaccharomyces cerevisiae.J.Biol.Chem.262, 546–548 (1987).

    PubMed  CAS  Google Scholar 

  • Bibus C.R., Lemire B.D., Suda K., Schatz G.: Mutations restoring import of a yeast mitochondrial protein with a nonfunctional presequences.J.Biol.Chem.263, 13097–13102 (1988).

    PubMed  CAS  Google Scholar 

  • Böhni P., Daum G., Schatz G.: Import of proteins into mitochondria. Partial purification of a matrix-located protease involved in cleavage of mitochondrial precursor polypeptides.J.Biol.Chem.258, 4937–4943 (1983).

    PubMed  Google Scholar 

  • Böhni P.C., Deshaies R.J., Schexman R.W.:SEC11 is required for signal peptide processing of precursors and yeast cell growth.J.Cell Biol.106, 1035–1042 (1988).

    Article  PubMed  Google Scholar 

  • Böhni P.C., Schauer I., Tekamp-Olson P., Schekman R.: Signal peptide cleavage mutants of yeast invertase, pp. 255–264 in Proteases in Biological Control and Biotechnology (D.D. Cunningham, G.L. Long, Eds.).UCLA Symposia on Molecular and Cellular Biology, Vol. 57. A.R. Liss Inc., New York 1987.

    Google Scholar 

  • Boone C., Bussey H., Greene D., Thomas D.Y., Vernet T.: Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component.Cell46, 105–113 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Borst P.: How proteins get into microbodies (peroxisomes, glyoxisomes, glycosomes).Biochim.Biophys.Acta866, 179–203 (1986).

    PubMed  CAS  Google Scholar 

  • Bostian K.A., Elliot O., Bussey H., Burn V., Smith A., Tipper D.J.: Sequence of the preprotoxin dsRNA gene of type I killer yeast: Multiple processing events produce a two-component toxin.Cell36, 741–751 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Brada D., Schekman R.: Coincidental localization of secretory and plasma membrane proteins in organelles of the yeast secretory pathway.J.Bacteriol.170, 2775–2783 (1988).

    PubMed  CAS  Google Scholar 

  • Brake A.J., Julius D.J., Thorner J.: A functional prepro-α-factor gene inSaccharomyces yeasts can contain three, four, or five repeats of the mature pheromone sequence.Mol.Cell.Biol.3, 1440–1450 (1983).

    PubMed  CAS  Google Scholar 

  • Brake A.J., Brenner C., Najarian R., Laybourn P., Merrywheather J.: Structure of genes encoding precursors of yeast peptide mating pheromone a-factor, pp. 103–108 in Protein Transport and Secretion (M.J. Gething, Ed.).Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1985.

    Google Scholar 

  • Brenwald P., Liao X., Holm K., Porter G., Wise J.A.: Identification of an essentialSchizosaccharomyces pombe RNA homologous to the 7SL component of signal recognition particle.Mol.Cell.Biol.8, 1580–1590 (1988).

    Google Scholar 

  • Broach J., Garrett S., Jones S., Fedor-Chaiken M., Silberberg S., Hengge-Arouis, Deschenes R., Clarke S., Stock J.: The RAS pathway and cell cycle control inSaccharomyces cerevisiae.J.Cell.Biochem., Suppl.13E, p.7 (1989).

    Google Scholar 

  • Bussey H.: Proteases and the processing of precursors to secreted proteins in yeast.Yeast4, 17–26 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Bussey H., Saville D., Greene D., Tipper D.J., Bostian K.A.: Secretion ofSaccharomyces cerevisiae killer toxin: processing of the glycosylated precursor.Mol.Cell.Biol.3, 1362–1370 (1983).

    PubMed  CAS  Google Scholar 

  • Celenza J.L., Marshall-Carlson L., Carlson M.. The yeastSNF3 gene encodes a glucose transporter homologous to the mammalian protein.Proc.Nat.Acad.Sci.USA85, 2130–2134 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Chan R.K., Melnick L.M., Blair L.C., Thorner J.: Extracellular suppression allows mating by pheromone-deficient sterile mutants ofSaccharomyces cerevisiae.J.Bacteriol.155, 903–906 (1983).

    PubMed  CAS  Google Scholar 

  • Chen W.-J., Douglas M.G.: The role of protein structure in the mitochondrial import pathway. Unfolding of mitochondrially bound precursors is required for membrane translocation.J.Biol.Chem.262, 15605–15609 (1987).

    PubMed  CAS  Google Scholar 

  • Cheng M.Y., Hartl F.-U., Martin J., Pollock R.A., Kalousek F., Neupert W., Hallberg E.M., Hallberg R.L., Horwich A.L.: Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria.Nature337, 620–625 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Chirico W.J., Waters M.G., Blobel G.: 70K heat shock related proteins stimulate protein translocation into microsomes.Nature332, 805–810 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Chvatchko Y., Howald I., Riezman H.: Two yeast mutants defective in endocytosis are defective in pheromone response.Cell46, 355–364 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Clark D.W., Tkacz J.S., Lampen J.O.: Asparagine-linked carbohydrate does not determine the cellular location of yeast vacuolar nonspecific alkaline phosphatase.J.Bacteriol.152, 865–873 (1982).

    PubMed  CAS  Google Scholar 

  • Conzelman A., Riezman H., Desponds C., Bron C.: A major 125-kd membrane glycoprotein ofSaccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid.EMBO J.7, 2233–2240 (1988).

    Google Scholar 

  • Dawidow L.S., O’Donnel M.M., Kaczmarek F.S., Pereira D.A., Dezeeuw J.R., Franke A.E.: Cloning and sequencing of the alkaline extracellular protease gene ofYarrowia lipolytica.J.Bacteriol.169, 4621–4629 (1987).

    Google Scholar 

  • Deschenes R.J., Broach J.R.: Fatty acylation is important but not essential forSaccharomyces cerevisiae RAS function.Mol.Cell.Biol.7, 2344–2351 (1987).

    PubMed  CAS  Google Scholar 

  • Deshaies R.J., Schekman R.: A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum.J.Cell Biol.105, 633–645 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Deshaies R.J., Koch B.D., Schekman R.: The role of stress proteins in membrane biogenesis.Trends Biochem.Sci.13, 384–388 (1988a).

    Article  PubMed  CAS  Google Scholar 

  • Deshaies R.J., Koch B.D., Werner-Washburne M., Craig E.A., Schekman R.: A subfamily of stress proteins facilitates translocation, of secretory and mitochondrial precursor polypeptides.Nature332, 800–805 (1988b).

    Article  PubMed  CAS  Google Scholar 

  • Deshaies R.J., Kepes F., Böhni P.C.: Genetic dissection of the early stages of protein secretion in yeast.Trends Genet.5, 87–93 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Dmochowska A., Dignard D., Henning P., Thomas D.Y., Bussey H.: YeastKEX1 gene encodes putative protease with a carboxypeptidase B-like function involved in killer toxin andα-factor precursor processing.Cell50, 573–584 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Douglas M.G., McCammon M.T., Vassarotti A.: Targeting proteins into mitochondria.Microbiol.Rev.50, 166–178 (1986).

    PubMed  CAS  Google Scholar 

  • Eakle K.A., Bernstein M., Emr S.D.: Characterization of a component of the yeast secretion machinery: identification of theSEC18 gene product.Mol.Cell.Biol.8, 4098–4109 (1988).

    PubMed  CAS  Google Scholar 

  • Eilers M., Schatz G.: Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria.Nature322, 228–232 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Eilers M., Schatz G.: Protein unfolding and the energetics of protein translocation across biological membranes.Cell52, 481–483 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Eilers M., Hwang S., Schatz G.: Unfolding and refolding of a purified precursor protein during import into isolated mitochondria.EMBO J.7, 1139–1145 (1988).

    PubMed  CAS  Google Scholar 

  • Emter O., Mechler B., Achstetter T., Muller H., Wolf D.H.: Yeast pheromoneα-factor is synthetized as a high molecular weight precursor.Biochem.Biophys.Res.Commun.116, 822–829 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Enzyme Nomenclature 1984.Recommendations of the Nomenclature Committee of the International Union of Biochemistry. Academic Press, Orlando-San Diego-New York-London-Toronto-Montreal-Sydney-Tokyo 1984.

    Google Scholar 

  • Esmon P.C., Esmon B.E., Schauer I.E., Taylor A., Schekman R.: Structure, assembly, and secretion of octameric invertase.J.Biol.Chem.262, 4387–4394 (1987).

    PubMed  CAS  Google Scholar 

  • Field C., Schekman R.: Localized secretion of acid phosphatase reflects the pattern of cell-surface growth inSaccharomyces cerevisiae.J.Cell Biol.86, 123–128 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama A., Tamanoi F.: Processing and fatty acid acylation of RAS1 and RAS2 proteins inSaccharomyces cerevisiae.Proc.Nat.Acad.Sci.USA83, 1266–1270 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama A., Matsumoto K., Tamanoi F.: A novel yeast mutant defective in the processing of ras proteins: assessment of the effect of the mutation on processing steps.EMBO J.6, 223–228 (1987).

    PubMed  CAS  Google Scholar 

  • Fuller R.S., Sterne R.E., Thorner J.: Enzymes required for yeast prohormone processing.Ann.Rev.Physiol.50, 345–362 (1988).

    Article  CAS  Google Scholar 

  • Goodman L.E., Perou C.M., Fujiyama A., Tamanoi F.: Structure and expression of yeastDPR1, a gene essential for the processing and intracellular localization of ras proteins.Yeast4, 271–281 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Goud B., Salminen A., Walworth N.C., Novick P.: A GTP-binding protein required for secretion rapidly associates with secretory vesicles and plasma membrane in yeast.Cell53, 753–768 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Gould S.J., Keller G.-A., Subramani S.: Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins.J.Cell Biol.107, 897–905 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Gunge N.: Linear DNA killer plasmids from the yeastKluyveromyces.Yeast2, 153–162 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis R., Hinnen A.: A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase.Mol.Cell.Biol.4, 2668–2675 (1984).

    PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis R., Nagy M., Ryter A.: A deletion that includes the segment coding for the signal peptidase cleavage site delays release ofSaccharomyces cerevisiae acid phosphatase from the endoplasmic reticulum.Mol.Cell.Biol.6, 723–729 (1986).

    PubMed  CAS  Google Scholar 

  • Hall M.N., Fried S.R.: Is nuclear protein localization receptor mediated?, pp. 187–192 inMolecular Biology of Intracellular Protein Sorting and Organelle Assembly (R. Bradshaw, L. McAlister-Henn, M. Douglas, Eds.). A.R. Liss Inc., New York 1988.

    Google Scholar 

  • Hall M.N., Hereford L., Herskowitz I.: TargetingE. coli β-galactosidase to the nucleus in yeast.Cell36, 1057–1065 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Hanes S.D., Burn V.E., Sturley S.L., Tipper D.J., Bostian K.A.: Expression of a cDNA derived from the yeast killer preprotoxin gene: implications for processing and immunity.Proc.Nat.Acad.Sci.USA83, 1675–1679 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Hansen W., Walter P.: Prepro-carboxypeptidase Y and a truncated form of pre-invertase, but not full-length pre-invertase, can be post-translationally translocated across microsomal vesicle membranes fromSaccharomyces cerevisiae.J.Cell Biol.106, 1075–1081 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Hansen W., Garcia P.D., Walter P.:In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-α-factor.Cell45, 397–406 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Hartl F.-U., Pfanner N., Nicolson D.W., Neupert W.: Mitochondrial protein import.Biochim.Biophys.Acta988, 1–45 (1989).

    PubMed  CAS  Google Scholar 

  • Hashimoto C., Cohen R.E., Zhang W.-J., Ballou C.E.: Carbohydrate chains on yeast carboxypeptidase Y are phosphorylated.Proc.Nat. Acad.Sci.USA78, 2244–2248 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Hasilik A., Tanner W.: Biosynthesis of the vacuolar glycoprotein carboxypeptidase Y. Conversion of precursor into enzyme.Eur.J.Biochem.91, 567–575 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Hawlitschek G., Schneider H., Schmidt B., Tropschung M., Hartl F.-U., Neupert W.: Mitochondrial protein transport: Identification of processing peptidase and of PEP, a processing enhancing protein.Cell53, 795–806 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Hemmings B., Zubenko G., Hasilik A., Jones W.: Mutant defective in processing of an enzyme located in the lysosome-like vacuole ofSaccharomyces cerevisiae.Proc.Nat.Acad.Sci.USA78, 435–439 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Hoffman W.: Molecular characterization of theCAN1 locus inSaccharomyces cerevisiae.J.Biol.Chem.260, 11831–11837 (1985).

    Google Scholar 

  • Hoffman W.:CAN1-SUC2 gene fusion studies inSaccharomyces cerevisiae.Mol.Gen.Genet.210, 277–281 (1987).

    Article  Google Scholar 

  • Holcomb C.L., Etcheverry T., Schekman R.: Isolation of secretory vesicles fromSaccharomyces cerevisiae.Anal.Biochem.166, 328–334 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Holcomb C.L., Hansen W.J., Etcheverry T., Schekman R.: Secretory vesicles externalize the major plasma membrane ATPase in yeast.J.Cell Biol.106, 641–648 (1988a).

    Article  PubMed  CAS  Google Scholar 

  • Holcomb C.L., Hansen W., Etcheverry T., Schekman R.: Plasma membrane protein intermediates are present in the secretory vesicles of yeast, pp. 153–160 inMolecular Biology of Intracellular Protein Sorting and Organelle Assembly (R.B. Bradshaw, L. McAlister-Henn, M. Douglas, Eds.). A.R. Liss Inc., New York 1988b.

    Google Scholar 

  • Hurt E.C., Schatz G.: A cytosolic protein contains a cryptic mitochondrial targeting signal.Nature325, 499–503 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hurt E.C., Van Loon A.P.G.M.: How proteins find mitochondria and intramitochondrial compartments.Trends Biochem.Sci.11, 204–207 (1986).

    Article  CAS  Google Scholar 

  • Ishibashi Y., Sakagami Y., Isogai A., Suzuki A.: Structures of tremerogens A-9291-I and A-9291-VIII: peptidyl sex hormones ofTremelld bras.Biochemistry23, 1399–1404 (1984).

    Article  CAS  Google Scholar 

  • Jenness D.D., Spatrick P.: Down regulation of theα-factor pheromone receptor inS. cerevisiae.Cell46, 345–353 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Jensen R.E., Yaffe M.P.: Import of proteins into yeast mitochondria: the nuclearMAS2 gene encodes a component of the processing protease that is homologous to theMAS1-encoded subunit.EMBO J.7, 3863–3871 (1988).

    PubMed  CAS  Google Scholar 

  • Johnson L.M., Bankaitis V.A., Emr S.D.: Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease.Cell48, 875–885 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Jones E.W.: The synthesis and function of proteases inSaccharomyces: genetic approaches.Ann.Rev.Genet.18, 233–270 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Julius D., Brake A., Blair L., Kunisawa R., Thorner J.: Isolation of the putative structural gene for the lysine — arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor.Cell37, 1075–1089 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Jund R., Weber E., Chevalier M.-R.: Primary structure of the uracil transport protein ofSaccharomyces cerevisiae.Eur.J.Biochem.171, 417–424 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Kaiser C.A., Preuss D., Grisafi P., Botstein D.: Many random sequences functionally replace the secretion signal sequence of yeast invertase.Science235, 312–317 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y., Sakurai A., Tamura S., Takahashi N., Abe K., Tsuchiya E., Fukui S., Kitada C., Fujimo M.: Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation inRhodosporidium toruloides.Biochem.Biophys.Res.Commun.83, 1077–1083 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kassenbrock C.K., Garcia P.D., Walter P., Kelly R.B.: Heavy-chain binding protein recognizes aberrant polypeptides translocatedin vitro.Nature333, 90–93 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Klionsky D.J., Banta L.M., Emr S.D.: Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information.Mol.Cell.Biol.8, 2105–2116 (1988).

    PubMed  CAS  Google Scholar 

  • Koch B.D., Schekman R.W.: Soluble factors involved in the post-translational translocation of the prepro-α-factor into yeast microsomes.J.Cell Biol.107, Part 3, 766a (1988).

  • Kukuruzinska M.A., Bergh M.L.E., Jackson B.J.: Protein glycosylation in yeast.Ann.Rev.Biochem.56, 915–944 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kurjan J., Herskowitz I.: Structure of a yeast pheromone gene (MFα): a putativeα-factor precursor contains four tandem copies of matureα-factor.Cell30, 933–943 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Lazarow P.B., Fujiki Y.: Biogenesis of peroxisomes.Ann.Rev.Cell Biol.1, 489–530 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Lemmon S.K., Jones E.W.: Clathrin requirement for normal growth of yeast.Science238, 504–509 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S., Craig E.A.: The heat-shock proteins.Ann.Rev.Genet.22, 631–677 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Lolle S.J., Bussey H.:In vivo evidence for posttranslational translocation and signal cleavage of the killer preprotoxin ofSaccharomyces cerevisiae.Mol.Cell.Biol.6, 4274–4280 (1986).

    PubMed  CAS  Google Scholar 

  • Lolle S., Skipper N., Bussey H., Thomas D.Y.: The expression of cDNA clones of yeast M1 double-stranded RNA in yeast confers both killer and immunity phenotypes.EMBO J.3, 1383–1387 (1984).

    PubMed  CAS  Google Scholar 

  • Makarow M.: Endocytosis inSaccharomyces cerevisiae: internalization of enveloped viruses into spheroplasts.EMBO J.4, 1855–1860 (1985a).

    PubMed  CAS  Google Scholar 

  • Makarow M.: Endocytosis inSaccharomyces cerevisiae: internalization ofα-amylase and fluorescent dextran into cells.EMBO J.4, 1861–1866 (1985b).

    PubMed  CAS  Google Scholar 

  • Matile P., Moor H., Robinow C.F.: Yeast cytology, pp. 219–302 inThe Yeasts (A.H. Rose, J.S. Harrison, Eds.). Academic Press, London 1969.

    Google Scholar 

  • Matoba S., Fukuyama J., Wing R.A., Ogrydziak D.M.: Intracellular precursors and secretion of alkaline extracellular protease ofYarrowia lipolytica.Mol.Cell.Biol.8, 4904–4916 (1988).

    PubMed  CAS  Google Scholar 

  • Mechler B., Müller H., Wolf D.H.: Maturation of vacuolar lysosomal enzymes in yeast: proteinaseyscA and proteinaseyscB are catalysts of the processing and activation event of carboxypeptidaseyscY.EMBO J.6, 2157–2163 (1987).

    PubMed  CAS  Google Scholar 

  • Mechler B., Hirsch H.H., Müller H., Wolf D.H.: Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of proteinaseyscB.EMBO J.7, 1705–1710 (1988).

    PubMed  CAS  Google Scholar 

  • Messenguy F., Dubois E., Descamps F.: Nucleotide sequence of theARGR II regulatory gene and amino acid sequence homologies betweenARGR II, PPR1 andGAL4 regulatory proteins.Eur.J.Biochem.157, 77–81 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K., Nakamura T., Tanaka K., Sakakibara S., Matsuno H.: A membrane-bound, calcium-dependent protease in yeastα-cell cleaving on the carboxyl side of paired basic residues.Biochem.Biophys.Res.Commun.144, 807–814 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Moehle C.M., Tizard R., Lemmon S.K., Smart J., Jones E.W.: Protease B of the lysosome like vacuole of the yeastSaccharomyces cerevisiae is homologous to the subtilisin family of serine proteases.Mol.Cell.Biol.7, 4390–4399 (1987).

    PubMed  CAS  Google Scholar 

  • Moehle C.M., Dixon C.K., Jones E. W.: Processing pathway for protease B ofSaccharomyces cerevisiae.J.Cell Biol.108, 309–324 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Molenaar C.M.T., Prange R., Gallwitz D.: A carboxyl-terminal residue is required for palmitic acid binding and biological activity of the ras-related yeastYPT1 protein.EMBO J.7, 971–976 (1988).

    PubMed  CAS  Google Scholar 

  • Moreland R.B., Nam H.G., Hereford L.M., Fried H.M.: Identification of a nuclear localization signal of a yeast ribosomal protein.Proc.Nat.Acad.Sci.USA82, 6561–6565 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Moreland R.B., Langevin G.L., Singer R.H., Garcea R.L., Hereford L.M.: Amino acid sequences that determine the nuclear localization of yeast histone 2B.Mol.Cell.Biol.7, 4048–4057 (1987).

    PubMed  CAS  Google Scholar 

  • Mueller S.C., Branton D.: Identification of coated vesicles inSaccharomyces cerevisiae.J.Cell Biol.98, 341–346 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Munro S., Pelham H.R.B.: A C-terminal signal prevents secretion of luminal ER proteins.Cell48, 899–907 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Murakami H., Pain D., Blobel G.: 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria.J.Cell Biol.107, 2051–2057 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Nair J., Novick P.J.: Characterization ofSEC2, a gene required for secretion inSaccharomyces cerevisiae. J.Cell Biol.107, Part 3, 771a (1988).

  • Nakano A., Brada D., Schekman R.: A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast.J.Cell Biol.107, 851–863 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen L.T., Makarow M.: Intracellular transport in interphase and mitotic cells.Eur.J.Biochem.178, 39–46 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Newman A.R., Ferro-Novick S.: Characterization of new mutants in the early part of the yeast secretory pathway isolated by a3H-mannose suicide selection.J.Cell Biol.105, 1587–1594 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Novick P., Botstein D.: Phenotypic analysis of temperature-sensitive yeast actin mutants.Cell40, 405–416 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Novick P., Schekman R.: Secretion and cell surface growth are blocked in a temperature sensitive mutant ofSaccharomyces cerevisiae.Proc.Nat.Acad.Sci.USA76, 1858–1862 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Novick P., Schekman R.: Export of major cell surface proteins is blocked in yeast secretory mutants.J.Cell Biol.96, 541–547 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Novick P., Field C., Schekman R.: Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway.Cell21, 205–215 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Novick P., Ferro S., Schekman R.: Order of events in the yeast secretory pathway.Cell25, 461–469 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Palade G.: Intracellular aspects of the process of protein secretion.Science189, 347–358 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Payne G.S., Schekman R.: A test of clathrin function in protein secretion and cell growth.Science230, 1009–1014 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Payne G.S., Hasson T.B., Hasson M.S., Schekman R.: Genetic and biochemical characterization of clathrin-deficientSaccharomyces cerevisiae.Mol.Cell.Biol.7, 3888–3898 (1987).

    PubMed  CAS  Google Scholar 

  • Payne G.S., Baker D., van Tuinen E., Schekman R.: Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast.J.Cell Biol.106, 1453–1461 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Pearse B.M.F.: TheEMBO medal review. Clathrin and coated vesicles.EMBO J.6, 2507–2512 (1987).

    PubMed  CAS  Google Scholar 

  • Pelham H.R.B., Hartwick K.G., Lewis M.J.: Sorting of soluble ER proteins in yeast.EMBO J.7, 1757–1762 (1988).

    PubMed  CAS  Google Scholar 

  • Perlman D., Halvorson H.O.: A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides.J.Mol.Biol.167, 391–409 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N., Neupert W.: Biogenesis of mitochondrial energy transducing complexes.Curr.Top.Bioenerg.15, 177–219 (1987).

    CAS  Google Scholar 

  • Pfanner N., Hartl F.-U., Neupert W.: Import of proteins into mitochondria: a multi-step process.Eur.J.Biochem.175, 205–212 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Pollock R.A., Hartl F.-U., Cheng M.Y., Ostermann J., Horwich A., Neupert W.: The processing peptidase of yeast mitochondria: the two cooperating components MPP and PEP are structurally related.EMBO J.7, 3493–3500 (1988).

    PubMed  CAS  Google Scholar 

  • Poritz M.A., Siegel V., Hansen W., Walter P.: Small ribonucleoproteins inSchizosaccharomyces pombe andYarrowia lipolytica homologous to signal recognition particle.Proc.Nat.Acad.Sci. USA85, 4315–4319 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Powers S., Michaelis S., Broek D., Santa-Anna A.S., Field J., Herskowitz I., Wigler M.:RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromonea-factor.Cell47, 413–422 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Reading D.S., Hallberg R.L., Myers A.M.: Characterization of the yeastHSP60 gene coding for a mitochondrial assembly factor.Nature337, 655–659 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Ribes V., Dehoux P., Tollervey D.: 7SL RNA fromSchizosaccharomyces pombe is encoded by a single copy essential gene.EMBO J.7, 231–237 (1988).

    PubMed  CAS  Google Scholar 

  • Riezman H.: Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis.Cell40, 1001–1009 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Riezman H., Hay R., Witte C., Nelson N., Schatz G.: Yeast mitochondtial outer membrane specifically binds cytoplasmatically synthetized precursors of mitochondrial proteins.EMBO J.2, 1113–1118 (1983).

    PubMed  CAS  Google Scholar 

  • Riezman H., Chvatchko Y., Dulic V.: Endocytosis in yeast.Trends Biochem.Sci.11, 325–328 (1986).

    Article  CAS  Google Scholar 

  • Roberts C.J., Pohlig G., Rothman J.H., Stevens T.H.: Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole.J.Cell Biol.108, 1363–1373 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Robinson J.S., Klionsky D.J., Banta L.M., Emr S.D.: Protein sorting inSaccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases.Mol.Cell.Biol.8, 4936–4948 (1988).

    PubMed  CAS  Google Scholar 

  • Roise D., Schatz G.: Mitochondrial presequences.J.Biol.Chem.263, 4509–4511 (1988).

    PubMed  CAS  Google Scholar 

  • Roise D., Horvath S.J., Tomick J.M., Richards J.H., Schatz G.: A chemically synthetized mitochondrial signal peptide can form an amphiphatic helix and perturb natural and artificial phospholipid bilayers.EMBO J.5, 1327–1334 (1986).

    PubMed  CAS  Google Scholar 

  • Rose M.D., Vogel J.P., Scidmore M.A., Misra L.:KAR2, the yeast homologue of mammalianBiP/GRP78, is required for translocation of proteins into the endoplasmic reticulum.J.Cell.Biochem., Suppl.13E, p.12 (1989).

    Google Scholar 

  • Rothblatt J.A., Meyer D.I.: Secretion in yeast: reconstitution of the translocation and glycosylation ofa-factor and invertase in a homologous cell-free system.Cell44, 619–628 (1986a).

    Article  PubMed  CAS  Google Scholar 

  • Rothblatt J.A., Meyer D.I.: Secretion in yeast: translocation and glycosylation of prepro-α-factorin vitro can occurvia an ATP-dependent post-translational mechanism.EMBO J.5, 1031–1036 (1986b).

    PubMed  CAS  Google Scholar 

  • Rothblatt J.A., Webb J.R., Ammerer G., Meyer D.I.: Secretion in yeast: structural features influencing the post-translational translocation of prepro-α-factorin vitro.EMBO J.6, 3455–3463 (1987).

    PubMed  CAS  Google Scholar 

  • Rothblatt J.A., Stirling C.J., Deshaies R.J., Schekman R.: Yeastsec mutants exhibit differential blocks in translocation of secretory and membrane proteins into the endoplasmic reticulum.J.Cell Biol.107, Part 3, 765a (1988).

  • Rothman J.E., Kornberg R.D.: An unfolding story of protein translocation.Nature322, 209–210 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rothman J.H., Stevens T.H.: Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway.Cell47, 1041–1051 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rothman J.H., Hunter C.P., Valls L.A., Stevens T.H.: Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene.Proc.Nat.Acad.Sci.USA83, 3248–3252 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Ruoholla H., Kabcenell A.K., Ferro-Novick S.: Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in thesec23 mutant.J.Cell Biol.107, 1465–1476 (1988).

    Article  Google Scholar 

  • Salminen A., Novick P.J.: A ras-like protein is required for a post-Golgi event in yeast secretion.Cell49, 527–538 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Salminen A., Novick P.J.: Analysis ofSEC15 gene: genetic interaction with a RAS-like GTP-binding proteinSEC4. Yeast, Spec.Issue, S453 (1988).

  • Sambrook J., Normington K., Kosutsumi Y., Kohno K., Gething M.-J.: Cloning and initial characterization of anSaccharomyces cerevisiae gene homologous to the mammalian gene encoding heavy-chain binding protein (BiP).J.Cell Biol.107, Part 3, 771a (1988).

  • Schaap P.J., van’t Riet J., Planta R.J., Raue H.A.: Nuclear localization signals in yeast.Yeast 4, Spec. Issue, S283 (1988).

  • Schauer I., Emr S., Gross C., Schekman R.: Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme.J.Cell Biol.100, 1664–1675 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Schekman R.: Protein localization and membrane traffic in yeast.Ann.Rev.Cell Biol.1, 115–143 (1985).

    PubMed  CAS  Google Scholar 

  • Schleyer M., Neupert W.: Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes.Cell43, 339–350 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Schmitt H.D., Wagner P., Pfaff E., Gallwitz D.: The ras-relatedYPT1 gene product in yeast: GTP-binding protein that might be involved in microtubule organization.Cell47, 401–412 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Schmitt H.D., Puzicka M., Gallwitz P.: Study of a temperature-sensitive mutant of the ras-relatedYPR1 gene product in yeast suggests a role in the regulation of intracellular calcium.Cell53, 635–647 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Schulte U., Arretz M., Schneider H., Tropschung M., Wachter E., Neupert W., Weiss H.: A family of mitochondrial proteins involved in bioenergetics and biogenesis.Nature339, 147–149 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger H., Hasilik A., von Figura K., Wiemken A., Tanner W.: Carbohydrate-free carboxypeptidase Y is transferred into the lysosome-like yeast vacuole.Biochem.Biophys.Res.Commun.104, 950–956 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Segev N., Mulholland J., Botstein D.: The yeast GTP-bindingYPT1 protein and a mammalian counterpart are associated with the secretion machinery.Cell52, 915–924 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Serrano R., Kielland-Brandt M.C., Fink G.R.: Yeast Plasma membrane ATPase is essential for growht and has homology with (Na++K+), K+ - and Ca2+- ATPases.Nature319, 689–693 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Silve S., Monod M., Hinnen A., Haguenauer-Tsapis R.: The yeast acid phosphatase can enter the secretory pathway without its N-terminal signal sequence.Mol.Cell.Biol.7, 3306–3314 (1987).

    PubMed  CAS  Google Scholar 

  • Silver P.A., Keegan L.P., Ptashne M.: Amino terminus of yeastGAL4 gene product is sufficient for nuclear localization.Proc.Nat.Acad.Sci.USA81, 5951–5955 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Silver P.A., Brent R., Ptashne M.: DNA binding is not sufficient for nuclear localization of regulatory proteins inSaccharomyces cerevisiae.Mol.Cell.Biol.6, 4763–4766 (1986).

    PubMed  CAS  Google Scholar 

  • Singh A., Chen E.Y., Lugovoy J.M., Chang C.N., Hitzeman R.A., Seeburg P.H.:Saccharomyces cerevisiae contains two discrete genes coding for the alpha-factor pheromone.Nucl.Acids Res.11, 4049–4063 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Sloat B., Adams A., Pringle J.: Role of theCDC24 gene product in cellular morphogenesis during theSaccharomyces cerevisiae cell cycle.J.Cell Biol.89, 395–405 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Small G.M., Lazarow P.B.: Import of the carboxy-terminal portion of acyl-CoA oxidase into peroxisomes ofCandida tropicalis.J.Cell Biol.105, 247–250 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Small G.M., Szabo L.J., Lazarow P.B.: Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes.EMBO J.7, 1167–1173 (1988).

    PubMed  CAS  Google Scholar 

  • Sor F., Fukuhara H.: Structure of a linear plasmid of the yeastKluyveromyces lactis: compact organization of the killer genome.Curr.Genet.9, 147–155 (1985).

    Article  CAS  Google Scholar 

  • Stark M.J.R., Boyd A.: The killer toxin ofKluyveromyces lactis: Characterization of the toxin subunits and identification of the genes which encode them.EMBO J.5, 1995–2002 (1986).

    PubMed  CAS  Google Scholar 

  • Sterne R.E., Thorner J.: Processing and secretion of a yeast peptide hormone by a novel pathway.J.Cell Biol.103, 189a (1986).

    Google Scholar 

  • Stevens T., Esmon B., Schekman R.: Early stages of the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole.Cell30, 439–448 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Stevens T.H., Rothman J.H., Payne G.S., Schekman R.: Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y.J.Cell Biol.102, 1551–1557 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Stotzler D., Kiltz H.H., Duntze W.: Primary structure of alpha-factor peptides fromSaccharomyces cerevisiae.Eur.J.Biochem.69, 397–400 (1976).

    Article  Google Scholar 

  • Sturley S.L., Elliot O., LeVitre J., Tipper D.J., Bostian K.A.: Mapping of the functional domains within theSaccharomyces cerevisiae type 1 killer preprotoxin.EMBO J.5, 3381–3389 (1986).

    PubMed  CAS  Google Scholar 

  • Tammi M., Ballou L., Taylor A., Ballou C.E.: Effect of glycosylation on yeast invertase oligomer stability.J.Biol.Chem.262, 4395–4401 (1987).

    PubMed  CAS  Google Scholar 

  • Tanguy-Rougeau C., Wesolowski-Louvel M., Fukuhara H.: TheKluyveromyces lactis KEX1 gene encodes a subtilisin-type serine proteinase.FEBS Lett.234, 464–470 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Tanner W., Lehle L.: Protein glycosylation in yeast.Biochim.Biophys.Acta906, 81–99 (1987).

    PubMed  CAS  Google Scholar 

  • Tipper D.J., Bostian K.A.: Double-stranded ribonucleic acid killer systems in yeasts.Microbiol.Rev.48, 125–156 (1984).

    PubMed  CAS  Google Scholar 

  • Toyn J., Hibbs A.R., Sanz P., Crowe J., Meyer D.I.:In vivo andin vitro analysis ofpt11, a yeastts mutant with a membrane-associated defect in protein translocation.EMBO J.7, 4347–4353 (1988).

    PubMed  CAS  Google Scholar 

  • Trumbly R.J., Bradley G.: Isolation and characterization of aminopeptidase mutants ofSaccharomyces cerevisiae.J.Bacteriol.156, 36–48 (1983).

    PubMed  CAS  Google Scholar 

  • Valls L.A., Hunter C.P., Rothman J.H., Stevens T.H.: Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide.Cell48, 887–897 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Van Loon A.P.G.M., Eilers M., Baker A., Verner K.: Transport of proteins into yeastmitochondria.J.Cell.Biochem.36, 59–71 (1988).

    Article  PubMed  Google Scholar 

  • Vassarotti A., Stroud R., Douglas M.: Independent mutations at the amino terminus of a protein act as surrogate signals for mitochondrial import.EMBO J.6, 705–711 (1987).

    PubMed  CAS  Google Scholar 

  • Verner K., Schatz G.: Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane but no added ATP.EMBO J.6, 2449–2456 (1987).

    PubMed  CAS  Google Scholar 

  • Verner K., Schatz G.: Protein translocation across membranes.Science241, 1307–1313 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Vestweber D., Schatz G.: Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria.EMBO J.7, 1147–1151 (1988a).

    PubMed  CAS  Google Scholar 

  • Vestweber D., Schatz G.: A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites.J.Cell Biol.107, 2037–2043 (1988b).

    Article  PubMed  CAS  Google Scholar 

  • Vestweber D., Schatz G.: Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxy-terminal stilbene disulfonate.J.Cell Biol.107, 2045–2049 (1988c).

    Article  PubMed  CAS  Google Scholar 

  • Von Heijne G.: Patterns of amino acids near signal-sequence cleavage sites.Eur.J.Biochem.133, 17–21 (1983).

    Article  Google Scholar 

  • Von Heijne G.: Signal sequences. The limits of variation.J.Mol.Biol.184, 99–105 (1985).

    Article  Google Scholar 

  • Von Heijne G.: Mitochondrial targeting sequences may form amphiphilic helices.EMBO J.5, 1335–1342 (1986).

    Google Scholar 

  • Vořišek J., Kotyk A., Lojda Z.: A possibly new mechanism of intracellular transport along the yeast secretory pathway revealed by ultracytochemical methods, pp. 815–825 inHighlights of Modern Biochemistry. VSP Internat. Science Publishers, Zeist (Netherlands) 1989.

    Google Scholar 

  • Wagner J.-C., Wolf D.H.: Hormone pheromone processing enzymes in yeast: the carboxy-terminal processing enzyme of the mating pheromoneα-factor, carboxypeptidaseyscα, is absent inα-factor maturation-defectivekex1 mutant cells.FEBS Lett.221, 423–426 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Walter P., Lingappa V.R.: Mechanism of protein translocation across the endoplasmic reticulum membrane.Ann.Rev.Cell Biol.2, 499–516 (1986).

    PubMed  CAS  Google Scholar 

  • Walworth N.C., Novick P.J.: Purification and characterization of constitutive secretory vesicles from yeast.J.Cell Biol.105, 163–174 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Waters M.G., Blobel G.: Secretory protein translocation in yeast cell-free system can occur post-translationally and requires ATP hydrolysis.J.Cell Biol.102, 1543–1550 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Waters M.G., Chirico W.J., Blobel G.: Protein translocation across the yeast microsomal membrane is stimulated by a soluble factor.J.Cell Biol.103, 2629–2636 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Waters M.G., Evans E.A., Blobel G.: Prepro-α-factor has a cleavable signal sequence.J.Biol.Chem.263, 6209–6214 (1988).

    PubMed  CAS  Google Scholar 

  • Watson M.E.E.: Compilation of published signal sequences.Nucl.Acids Res.12, 5145–5164 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Wen D., Schlesinger M.J.: Fatty acid-acylated proteins in secretory mutants ofSaccharomyces cerevisiae.Mol.Cell.Biol.4, 688–694 (1984).

    PubMed  CAS  Google Scholar 

  • Wiedmann M., Kurzchalia T.V., Hartman E., Rappoport T.A.: A signal sequence receptor in the endoplasmic membrane.Nature328, 830–833 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann M., Wiedmann B., Voigt S., Wachter E., Müller H.-G., Rappoport T.A.: Post-translational transport of proteins into microsomal membranes ofCandida maltosa.EMBO J.7, 1763–1768 (1988).

    PubMed  CAS  Google Scholar 

  • Wilson D.W., Wilcox C.A., Flynn G.C., Chen E., Kuang W.-J., Henzel W.J., Block M.R., Ullrich A., Rothman J.E.: A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast.Nature339, 355–359 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Wilson K.L., Herskowitz I.:STE16, a new gene required for pheromone production by a-cells ofSaccharomyces cerevisiae.Genetics155, 441–449 (1987).

    Google Scholar 

  • Witte C., Jensen R.E., Yaffe M.P., Schatz G.:MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease.EMBO J.7, 1439–1447 (1988).

    PubMed  CAS  Google Scholar 

  • Woolford C., Daniels L., Park F., Jones E., Van Arsdell J., Innis M.: ThePEP4 gene encodes an aspartyl protease implicated in the post-translational regulation ofSaccharomyces cerevisiae vacuolar hydrolases.Mol.Cell.Biol.6, 2500–2510 (1986).

    PubMed  CAS  Google Scholar 

  • YaDeau J.T., Blobel G.: Solubilization and characterization of yeast signal peptidase.J.Biol.Chem.264, 2928–2934 (1989).

    PubMed  CAS  Google Scholar 

  • Yaffe M.P., Ohta S., Schatz G.: A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides.EMBO J.4, 2069–2074 (1985).

    PubMed  CAS  Google Scholar 

  • Yang M., Jensen R.E., Yaffe M.P., Opplinger W., Schatz G.: Import of proteins into yeast mitochondria: the purified matrix processing protease contains two subunits which are encoded by the nuclearMAS1 andMAS2 genes.EMBO J.7, 3857–3862 (1988).

    PubMed  CAS  Google Scholar 

  • Zhu H., Bussey H., Thomas D.Y., Gagnon J., Bell A.: Determination of the carboxyl termini of theα andβ subunits of yeast K1 killer toxin: requirement of carboxypeptidase B-like activity for maturation.J.Biol.Chem.262, 10728–10732 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horák, J. Protein transport and compartmentation in yeast. Folia Microbiol 36, 3–34 (1991). https://doi.org/10.1007/BF02935819

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935819

Keywords

Navigation