Skip to main content

An Overview of Protein Secretion in Yeast and Animal Cells

  • Protocol
  • First Online:
Plant Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1662))

Abstract

Protein secretion mediated by the secretory transport pathway is an important cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments en route to their specific destinations. Transport of secretory proteins between different compartments is shuttled by small, membrane-enclosed vesicles. To ensure the fidelity of transport, eukaryotic cells employ elaborate molecular machineries to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver these transport vesicles to distinct acceptor compartments. In this review, we summarize the molecular machineries that regulate each step of vesicular transport in the secretory transport pathway in yeast and animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166

    Article  CAS  PubMed  Google Scholar 

  2. Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23:579–611

    Article  CAS  PubMed  Google Scholar 

  3. Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12(6):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo Y, Sirkis DW, Schekman R (2014) Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30:169–206

    Article  CAS  PubMed  Google Scholar 

  5. Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290(1):C11–C26

    Article  CAS  PubMed  Google Scholar 

  6. McNew JA (2008) Regulation of SNARE-mediated membrane fusion during exocytosis. Chem Rev 108(5):1669–1686

    Article  CAS  PubMed  Google Scholar 

  7. McNew JA et al (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407(6801):153–159

    Article  CAS  PubMed  Google Scholar 

  8. Parlati F et al (2000) Topological restriction of SNARE-dependent membrane fusion. Nature 407(6801):194–198

    Article  CAS  PubMed  Google Scholar 

  9. Izawa R, Onoue T, Furukawa N, Mima J (2012) Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 287(5):3445–3453

    Article  CAS  PubMed  Google Scholar 

  10. Brandhorst D et al (2006) Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci U S A 103(8):2701–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. d'Enfert C, Wuestehube LJ, Lila T, Schekman R (1991) Sec12p-dependent membrane binding of the small GTP-binding protein Sar1p promotes formation of transport vesicles from the ER. J Cell Biol 114(4):663–670

    Article  PubMed  Google Scholar 

  12. Barlowe C, Schekman R (1993) SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365(6444):347–349

    Article  CAS  PubMed  Google Scholar 

  13. Weissman JT, Plutner H, Balch WE (2001) The mammalian guanine nucleotide exchange factor mSec12 is essential for activation of the Sar1 GTPase directing endoplasmic reticulum export. Traffic 2(7):465–475

    Article  CAS  PubMed  Google Scholar 

  14. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  CAS  PubMed  Google Scholar 

  15. Lee MC et al (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122(4):605–617

    Article  CAS  PubMed  Google Scholar 

  16. Bielli A et al (2005) Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J Cell Biol 171(6):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bi X, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419(6904):271–277

    Article  CAS  PubMed  Google Scholar 

  18. Miller E, Antonny B, Hamamoto S, Schekman R (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21(22):6105–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller EA et al (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114(4):497–509

    Article  CAS  PubMed  Google Scholar 

  20. Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114(4):483–495

    Article  CAS  PubMed  Google Scholar 

  21. Aridor M et al (2001) The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J Cell Biol 152(1):213–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giraudo CG, Maccioni HJ (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14(9):3753–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo Y, Linstedt AD (2006) COPII-Golgi protein interactions regulate COPII coat assembly and Golgi size. J Cell Biol 174(1):53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichols WC et al (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93(1):61–70

    Article  CAS  PubMed  Google Scholar 

  25. Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1(6):330–334

    Article  CAS  PubMed  Google Scholar 

  26. Sato K, Nakano A (2002) Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharomyces cerevisiae. Mol Biol Cell 13(7):2518–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barlowe CK, Miller EA (2013) Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193(2):383–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belden WJ, Barlowe C (1996) Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J Biol Chem 271(43):26939–26946

    Article  CAS  PubMed  Google Scholar 

  29. Muniz M, Nuoffer C, Hauri HP, Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 148(5):925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belden WJ, Barlowe C (2001) Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294(5546):1528–1531

    Article  CAS  PubMed  Google Scholar 

  31. Caldwell SR, Hill KJ, Cooper AA (2001) Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 276(26):23296–23303

    Article  CAS  PubMed  Google Scholar 

  32. Yoshihisa T, Barlowe C, Schekman R (1993) Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259(5100):1466–1468

    Article  CAS  PubMed  Google Scholar 

  33. Antonny B, Madden D, Hamamoto S, Orci L, Schekman R (2001) Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 3(6):531–537

    Article  CAS  PubMed  Google Scholar 

  34. Aridor M, Bannykh SI, Rowe T, Balch WE (1999) Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J Biol Chem 274(7):4389–4399

    Article  CAS  PubMed  Google Scholar 

  35. Sato K, Nakano A (2005) Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12(2):167–174

    Article  CAS  PubMed  Google Scholar 

  36. Forster R et al (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16(2):173–179

    Article  CAS  PubMed  Google Scholar 

  37. Gimeno RE, Espenshade P, Kaiser CA (1996) COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell 7(11):1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaywitz DA, Espenshade PJ, Gimeno RE, Kaiser CA (1997) COPII subunit interactions in the assembly of the vesicle coat. J Biol Chem 272(41):25413–25416

    Article  CAS  PubMed  Google Scholar 

  39. Kung LF et al (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31(4):1014–1027

    Article  CAS  PubMed  Google Scholar 

  40. Yorimitsu T, Sato K (2012) Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol Biol Cell 23(15):2930–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakajima H et al (1991) A cytoskeleton-related gene, uso1, is required for intracellular protein transport in Saccharomyces cerevisiae. J Cell Biol 113(2):245–260

    Article  CAS  PubMed  Google Scholar 

  42. Barlowe C (1997) Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J Cell Biol 139(5):1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong M, Munro S (2014) Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346(6209):1256898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sacher M et al (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7(2):433–442

    Article  CAS  PubMed  Google Scholar 

  45. Cai H et al (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445(7130):941–944

    Article  CAS  PubMed  Google Scholar 

  46. Lord C et al (2011) Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473(7346):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157(4):645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamaguchi T et al (2002) Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2(3):295–305

    Article  CAS  PubMed  Google Scholar 

  50. Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14(6):382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144(6):1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D'Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358

    Article  PubMed  CAS  Google Scholar 

  53. Hoffman GR, Rahl PB, Collins RN, Cerione RA (2003) Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. Mol Cell 12(3):615–625

    Article  CAS  PubMed  Google Scholar 

  54. Eugster A, Frigerio G, Dale M, Duden R (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19(15):3905–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schledzewski K, Brinkmann H, Mendel RR (1999) Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J Mol Evol 48(6):770–778

    Article  CAS  PubMed  Google Scholar 

  56. Dodonova SO et al (2015) VESICULAR TRANSPORT. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349(6244):195–198

    Article  CAS  PubMed  Google Scholar 

  57. Nickel W, Brugger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115(Pt 16):3235–3240

    CAS  PubMed  Google Scholar 

  58. Goldberg J (1999) Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96(6):893–902

    Article  CAS  PubMed  Google Scholar 

  59. Jackson LP et al (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23(6):1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michelsen K et al (2007) Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 179(2):209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Szul T, Sztul E (2011) COPII and COPI traffic at the ER-Golgi interface. Physiology (Bethesda) 26(5):348–364

    Article  CAS  Google Scholar 

  62. Pelham HR, Rothman JE (2000) The debate about transport in the Golgi--two sides of the same coin? Cell 102(6):713–719

    Article  CAS  PubMed  Google Scholar 

  63. Guo Y, Punj V, Sengupta D, Linstedt AD (2008) Coat-tether interaction in Golgi organization. Mol Biol Cell 19(7):2830–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372(6501):55–63

    Article  CAS  PubMed  Google Scholar 

  65. Allan BB, Balch WE (1999) Protein sorting by directed maturation of Golgi compartments. Science 285(5424):63–66

    Article  CAS  PubMed  Google Scholar 

  66. Losev E et al (2006) Golgi maturation visualized in living yeast. Nature 441(7096):1002–1006

    Article  CAS  PubMed  Google Scholar 

  67. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441(7096):1007–1010

    Article  CAS  PubMed  Google Scholar 

  68. Munro S (1998) Localization of proteins to the Golgi apparatus. Trends Cell Biol 8(1):11–15

    Article  CAS  PubMed  Google Scholar 

  69. de Graffenried CL, Bertozzi CR (2004) The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr Opin Cell Biol 16(4):356–363

    Article  PubMed  CAS  Google Scholar 

  70. Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407

    Article  CAS  PubMed  Google Scholar 

  71. Patterson GH et al (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133(6):1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lavieu G, Zheng H, Rothman JE (2013) Stapled Golgi cisternae remain in place as cargo passes through the stack. eLife 2:e00558

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma D et al (2011) Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 145(7):1102–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stockklausner C, Klocker N (2003) Surface expression of inward rectifier potassium channels is controlled by selective Golgi export. J Biol Chem 278(19):17000–17005

    Article  CAS  PubMed  Google Scholar 

  75. Gravotta D et al (2012) The clathrin adaptor AP-1A mediates basolateral polarity. Dev Cell 22(4):811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo X et al (2013) The adaptor protein-1 mu1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev Cell 27(3):353–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Farias GG et al (2012) Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 75(5):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo Y, Zanetti G, Schekman R (2013) A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. eLife 2:e00160

    PubMed  PubMed Central  Google Scholar 

  79. Carvajal-Gonzalez JM et al (2015) The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nat Commun 6:6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sanchatjate S, Schekman R (2006) Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol Biol Cell 17(10):4157–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santos B, Snyder M (2003) Specific protein targeting during cell differentiation: polarized localization of Fus1p during mating depends on Chs5p in Saccharomyces cerevisiae. Eukaryot Cell 2(4):821–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Trautwein M et al (2006) Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. EMBO J 25(5):943–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang CW, Hamamoto S, Orci L, Schekman R (2006) Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J Cell Biol 174(7):973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barfield RM, Fromme JC, Schekman R (2009) The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast. Mol Biol Cell 20(23):4985–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Starr TL, Pagant S, Wang CW, Schekman R (2012) Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS One 7(10):e46386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen ZY et al (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25(26):6156–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vaegter CB et al (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14(1):54–61

    Article  CAS  PubMed  Google Scholar 

  88. Rogaeva E et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Willnow TE, Andersen OM (2013) Sorting receptor SORLA--a trafficking path to avoid Alzheimer disease. J Cell Sci 126(Pt 13):2751–2760

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez A, Valeiras M, Sidransky E, Tayebi N (2014) Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol Genet Metab 111(2):84–91

    Article  CAS  PubMed  Google Scholar 

  91. Reczek D et al (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 131(4):770–783

    Article  CAS  PubMed  Google Scholar 

  92. Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH (2013) Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152(4):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Richardson BC, McDonold CM, Fromme JC (2012) The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev Cell 22(4):799–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112(4):467–480

    Article  CAS  PubMed  Google Scholar 

  95. Wakana Y et al (2013) Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface. J Cell Biol 202(2):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Noda Y et al (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated triton-insoluble membranes. J Cell Biol 155(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jaulin F, Xue X, Rodriguez-Boulan E, Kreitzer G (2007) Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell 13(4):511–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Astanina K, Jacob R (2010) KIF5C, a kinesin motor involved in apical trafficking of MDCK cells. Cell Mol Life Sci 67(8):1331–1342

    Article  CAS  PubMed  Google Scholar 

  99. Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13(7):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21(4):537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55(5):707–734

    Article  CAS  PubMed  Google Scholar 

  102. Messenger SW, Falkowski MA, Groblewski GE (2014) Ca(2)(+)-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 55(6):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scheller RH (2013) In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release. Nat Med 19(10):1232–1235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.G. acknowledges the support from the Hong Kong Research Grants Council Grants 26100315 and HKUST12/CRF/13G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Guo, Y., Yang, F., Tang, X. (2017). An Overview of Protein Secretion in Yeast and Animal Cells. In: Jiang, L. (eds) Plant Protein Secretion. Methods in Molecular Biology, vol 1662. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7262-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7262-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7261-6

  • Online ISBN: 978-1-4939-7262-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics