Skip to main content
Log in

Structure of a linear plasmid of the yeast Kluyveromyces lactis; Compact organization of the killer genome

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Some strains of the yeast Kluyveromyces lactis contain a pair of linear DNA plasmids, k1 and k2, 8.8 and 13.8 kilobase pairs long, respectively. Simultaneous presence of the two plasmids confer a killer phenotype on the cell by producing a toxin which blocks the growth of sensitive yeast species. Previous genetic studies have suggested that the toxin protein is coded by the k1 plasmid. We have now determined the total nucleotide sequence of k1 DNA. The genome is 8,874 base pairs in length. It contains four protein-coding reading frames, three transcribed from one strand and the fourth transcribed from the complementary strand and has terminal inverted repeats of 202 base pairs. Nuclease S1 mapping confirmed this arrangement and showed that these genes are transcribed. The terminal repeats and the four genes form an extremely compact genome, with some overlapping of genes. All four genes use highly biased codons, 86% of them having A or T at the wobble position, reminiscent of yeast mitochondrial genes. Three genes share a very similar 5′ leader sequence. The nature of gene products is discussed in the light of what is known of the excreted toxin protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, de Bruijn MHL, Coulson AR, Epron IC, Sanger F, Young IG (1982) J Mol Biol 156:687–717

    Google Scholar 

  • Barrell BG, Air GM, Hutchinson III CA (1972) Nature 264:34–41

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Bevan EA, Herring AJ, Mitchell DJ (1973) Nature 245:81–86

    Google Scholar 

  • Blobel G, Dobberstein B (1975) J Cell Biol 67:835–851

    Google Scholar 

  • Bostian KA, Jayachandran S, Tipper DJ (1983) Cell 32:169–180

    Google Scholar 

  • Bostian KA, Elliot Q, Bussey H, Brun V, Smith A, Tipper DJ (1984) Cell 36:741–751

    Google Scholar 

  • Breunig KG, Dahlems U, Das S, Hollenberg CP (1984) Nucl Acids Res 12:2327–2341

    Google Scholar 

  • Campbell A (1962) Adv Genet 11:101–145

    Google Scholar 

  • De Louvencourt L, Fukuhara H, Heslot H, Wésolowski M (1983) J Bacteriol 154:737–742

    Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981a) J Bacteriol 145:382–391

    Google Scholar 

  • Gunge N, Sakaguchi K (1981b) J Bacteriol 147:155–160

    Google Scholar 

  • Gunge N, Murata K, Sakaguchi K (1982) J Bacteriol 151:462–464

    Google Scholar 

  • Gunge N (1983) Ann Rev Microbiol 37:252–276

    Google Scholar 

  • Guthrie C, Abelson J (1982) In: Strathern JN, Jones EW, Broach JR (eds) Molecular Biology of the Yeast Saccharomyces cerevisiae. Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor New York, p 487

    Google Scholar 

  • Hartley JL, Donelson JE (1980) Nature 286:860–865

    Google Scholar 

  • Herring AJ, Bevan EA (1974) J Gen Virol 22:387–394

    Google Scholar 

  • Hubbard SC, Ivatt RJ (1981) Ann Rev Biochem 50:555–583

    Google Scholar 

  • Julius D, Blair L, Brake A, Sprague G, Thorner J (1983) Cell 32:839–852

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–558

    Google Scholar 

  • Mizuno K, Matsuo H (1984) Nature 309:558–560

    Google Scholar 

  • Niwa O, Sakaguchi K, Gunge N (1981) J Bacteriol 148:988–990

    Google Scholar 

  • Perlman D, Halvorson HO (1983) J Mol Biol 167:391–409

    Google Scholar 

  • Shinagawa M, Padamanaban R (1980) Proc Natl Acad Sci USA 77:3831–3835

    Google Scholar 

  • Skipper N, Thomas D, Lau P (1984) EMBO journal 3:107–111

    Google Scholar 

  • Sor F, Fukuhara H (1983a) Cell 32:391–396

    Google Scholar 

  • Sor F, Wésolowski M, Fukuhara H (1983b) Nucleic Acids Res 11:5037–5044

    Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleic Acids Res 12:6011–6030

    Google Scholar 

  • Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki K, Tamura G (1983) Nature 304:464–466

    Google Scholar 

  • Tzagoloff A (1982) Mitochondria. Plenum Press, New York, p 308

    Google Scholar 

  • Wésolowski M, Algeri A, Goffrini P, Fukuhara H (1982a) Current Genetics 5:191–197

    Google Scholar 

  • Wésolowski M, Dumazert P, Fukuhara H (1982b) Curr Genet 5:199–203

    Google Scholar 

  • Wésolowski M, Algeri A, Fukuhara H (1982c) Curr Genet 5:205–208

    Google Scholar 

  • Wickner RB (1981) In: Strathern JN, Jones EN, Broach JR (eds) Molecular Biology of the Yeast Saccharomyces cerevisiae: Life Cycle and Inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor New York, p 415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sor, F., Fukuhara, H. Structure of a linear plasmid of the yeast Kluyveromyces lactis; Compact organization of the killer genome. Curr Genet 9, 147–155 (1985). https://doi.org/10.1007/BF00436963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00436963

Key words

Navigation