Skip to main content
Log in

Nucleation and undercooling of metal melt

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The effects of thermodynamic and dynamic factors on nucleation process have been integrated in a theoretical formula representing the dependence of undercooling on parameters concerned. Moreover, a method to determine the kind and amount of the most effective catalyst in an undercooled melt has been acquired. The results show that the undercooling increases with the decreasing surface area of the most effective catalyst and the increasing cooling rate as the kind of the most effective catalyst is constant. It increases to a maximum value when the ratio of the surface area of catalyst (S v V) to the cooling rate of melt (R c ) decreases to a critical value. The maximum undecooling not only depends on the ratio of non-dimensional factor of activation energy for an atom to diffuse (ϕ) to non-dimensional factor of driving force for nucleus to form (ψ), but also depends on the contact angle of the most effective catalyst; the smaller the ratio of ϕ to ψ, the higher the maximum undercooling, but it does not exceed the value of 2/3 melting point; the smaller the contact angle of the most effective catalyst, the lower the maximum undercooling, and the smaller the requisite value ofS v V/R c for the maximum undercooling also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turnbull, D., Cech, R. E., Microscopic observation of the solidification of small metal droplets, J. Appl. Phys., 1950, 21: 804.

    Article  Google Scholar 

  2. Mueller, B. A., Perepezko, J. H., The undercooling of aluminum, Metal. Trans. A., 1987, 18: 1143.

    Google Scholar 

  3. Perepezko, J. H., Nucleation in undercooled liquids, Mater. Sci. Eng., 1984, 65: 125.

    Article  Google Scholar 

  4. Kim, W. T., Zhang, D. L., Cantor, B., Nucleation of solidification in liquid droplets, Metall. Trans. A, 1991, 22: 2487.

    Article  Google Scholar 

  5. Wei Bingbo, Yang Gencang, Zhou Yaohe, High undercooling and rapid solidification of Ni-32.5% Sn eutectic alloy, Acta. Metall. Mater., 1991, 39: 61249.

    Google Scholar 

  6. Mueller, B. A., Perepezko, J. H., Microstructure Development in undercooled Al−Al2Cu Alloys, Mater. Sci. Eng., 1988, 98: 153.

    Article  Google Scholar 

  7. Koseki, T., Flemings, M. C., Solidification of undercooled Fe−Cr−Ni alloys: Part I. Thermal behavior, Metal. Trans. A, 1995, 26: 2991.

    Article  Google Scholar 

  8. Barth, M., Wei, B., Herlach, D. M. et al., Rapid solidification of undercooled nickel-aluminum melts, Mater. Sci. Eng., 1994, A178: 305.

    Article  Google Scholar 

  9. Kui, H. W., Greer, A. L., Turnbull, D., Formation of bulk metallic glass by fluxing, Appl. Phys. Lett., 1984, 45: 615.

    Article  Google Scholar 

  10. Jones, B. L., Weston, G. M., The structural features of undercooled nickel and nickel-oxygen alloys, J. Aust. Inst. Metals, 1970, 15: 4189.

    Google Scholar 

  11. Jones, B. L., Weston, G. M., Grain refinement in undercooled copper, J. Aust. Inst. Metals, 1970, 15: 3167.

    Google Scholar 

  12. Powell, L. F. G., The undercooling of silver, J. Aust. Inst. Metals, 1965, 10: 3223.

    Google Scholar 

  13. Powell, L. F. G., Hogan, L. M., The undercooling of copper and copper-oxygen alloys, Trans. Met. Soc. AIME, 1968, 242: 2133.

    Google Scholar 

  14. Powell, L. F. G., Hogan, L. M., The influence of oxygen content on grain size of undercooled silver, Trans. Met. Soc. AIME, 1969, 245: 407.

    Google Scholar 

  15. Kayyamis, T. Z., Flemings, M. C., Solidification of highly undercooled casting, Mod. Casting, 1967, 52: 97.

    Google Scholar 

  16. Kojiro, F., Kobayashi, Shingu, P. H., The solidification process of highly undercooled bulk Cu−O melts, J. Mater. Sci., 1988, 23: 2157.

    Article  Google Scholar 

  17. Mcleod, A. J., Hogan, L. M., Crystal multiplication in undercooled Cu+ 2Pct Sn alloy, Metall. Trans. A, 1978, 9: 987.

    Article  Google Scholar 

  18. Turnbull, D., Formation of crystal nuclei in liquid metals, J. Appl. Phys., 1950, 21: 1022.

    Article  Google Scholar 

  19. Brandes, E. A., Smithells Metals Reference Book, London: Butterworth Co. Ltd., 1983.

    Google Scholar 

  20. Gunduz, M., Hunt, J. D., Solid-liquid surface energy in the Al−Mg system, Acta Metall., 1989, 37(7): 1837.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zengyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, Z., Chang, F., Ma, W. et al. Nucleation and undercooling of metal melt. Sci. China Ser. E-Technol. Sci. 43, 113–119 (2000). https://doi.org/10.1007/BF02916881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916881

Keywords

Navigation