Skip to main content
Log in

The solidification process of highly undercooled bulk Cu-O melts

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of undercooling on grain structure was investigated in pure copper and alloys up to Cu ∼ 0.39wt% 0 (eutectic composition), in which grain refinement does not occur at any degree of bath undercooled when the oxygen content is less than 300 p.p.m. Grain refinement occurs in these alloys when the oxygen content exceeds about 300 p.p.m. and the undercooling prior to nucleation exceeds 100 K without quenching. Fragmentation affects primary, secondary and tertiary dendrite arms during and after recalescence. Quenching after recalescence at various solidification times retains transient grain structures. When the sample, which should have achieved complete grain refinement by furnace cooling, is quenched immediately after nucleation, the structure shows a trace of radiating fan-shaped grains originating from a single point of nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. F. Powell andL. M. Hogan,J. Inst. Metals 93 (1964–65) 505.

    Google Scholar 

  2. J. Fehling andE. Scheil,Z. Metallkde 53 (1962) 593.

    Google Scholar 

  3. J. L. Walker, in “Physical Chemistry of Process Metallurgy”, Part II (Interscience, New York, 1961) p. 845.

    Google Scholar 

  4. R. T. Southin andG. M. Weston,J. Aust. Inst. Metals 19 (1974) 93.

    Google Scholar 

  5. G. L. F. Powell andL. M. Hogan,Trans. Met. Soc. RIME 242 (1968) 2133.

    Google Scholar 

  6. A. J. McLeod,J. Aust. Inst. Metals 16 (1971) 124.

    Google Scholar 

  7. B. L. Jones andG. M. Weston,15 (1970) 189.

    Google Scholar 

  8. ,15 (1970) 167.

    Google Scholar 

  9. T. Z. Kattamis andM. C. Flemings,Mod. Casting 52 (1967) 97.

    Google Scholar 

  10. T. Z. Kattamis,J. Cryst. Growth 34 (1976) 215.

    Google Scholar 

  11. T. Z. Kattamis andM. C. Flemings,Trans. Met. Soc. RIME 236 (1966) 1523.

    Google Scholar 

  12. L. A. Tarshis, J. L. Walker andJ. W. Rutter,Met. Trans. 2 (1971) 2589.

    Google Scholar 

  13. G. L. F. Powell,J. Aust. Inst. Metals 10 (1965) 223.

    Google Scholar 

  14. K. Kobayashi andL. M. Hogan,Metals Forum 1 (1978) 165.

    Google Scholar 

  15. R. T. Sowthin andG. M. Weston,J. Aust. Inst. Metals 18 (1973) 74.

    Google Scholar 

  16. A. J. McLeod andL. M. Hogan,Met. Trans. 9A (1978) 987.

    Google Scholar 

  17. G. L. F. Powell andL. M. Hogan, Report on Project No. 93 (International Copper Research Association, New York, 1967) p. 17.

    Google Scholar 

  18. T. Z. Kattamis andS. Skolianos, in “Rapidly Quenched Metals” Vol. 1, edited by S. Steeb and H. Warlimont, (Elsevier, B.V., 1985) p. 51.

  19. A. J. McLeod andL. M. Hogan,J. Cryst. Growth 8 (1971) 61.

    Google Scholar 

  20. B. L. Jones andG. M. Weston,J. Mater. Sci. 5 (1970) 843.

    Google Scholar 

  21. G. L. F. Powell andL. M. Hogan,Trans. Met. Soc. ATME 245 (1969) 407.

    Google Scholar 

  22. S. Ino,J. Phys. Soc. Jpn 21 (1966) 346.

    Google Scholar 

  23. S. Ino andS. Ogawa,22 (1967) 1365.

    Google Scholar 

  24. K. Kobayashi andL. M. Hogan,Phil. Mag. A 40 (1979) 399.

    Google Scholar 

  25. D. Turnbull,J. Appl. Phys. 21 (1950) 1022.

    Google Scholar 

  26. G. M. Pound andV. K. Lamer,J. Amer. Chem. Soc. 74 (1952) 2323.

    Google Scholar 

  27. Y. Miyazawa andG. M. Pound,J. Cryst. Growth 23 (1974) 45.

    Google Scholar 

  28. F. Spaepen,Acta Metall. 23 (1975) 729.

    Google Scholar 

  29. F. Spaepen andD. Turnbull, in Proceedings of 2nd International Conference on Rapidly Quenched Metals, Section 1, edited by N. J. Grant and B. C. Giessen (MIT Press, Cambridge, 1976) p. 205.

    Google Scholar 

  30. J. W. Cahn,Acta Metall. 4 (1956) 572.

    Google Scholar 

  31. R. A. Grange andJ. M. Kiefer,Trans. ASM 29 (1941) 85.

    Google Scholar 

  32. M. Hansen andK. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).

    Google Scholar 

  33. T. Okamoto andK. Kishitake,J. Cryst. Growth 29 (1975) 137.

    Google Scholar 

  34. J. C. Baker andJ. W. Cahn, “Solidification”, (American Society for Metals, Metals Park, Ohio, 1971) p. 23.

    Google Scholar 

  35. K. A. Jackson, J. D. Hunt, D. R. Uhlmann andT. P. Seward,Trans. Met. Soc. ATME 234 (1966) 149.

    Google Scholar 

  36. W. A. Tiller andS. O'Hara, “The Solidification of Metals”, No. 101 (ISI Publications, London, 1967) p. 27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, K.F., Shingu, P.H. The solidification process of highly undercooled bulk Cu-O melts. J Mater Sci 23, 2157–2166 (1988). https://doi.org/10.1007/BF01115783

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115783

Keywords

Navigation