Skip to main content
Log in

Thermal stability of electroless-nickel/solder interface: Part B. Interfacial fatigue resistance

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationship between fatigue resistance and interfacial microstructure was studied along the interface between the Sn-Pb eutectic alloy and an electroless Ni-P coating. The fatigue resistance of the solder interface was measured from the flexural peel fracture mechanics specimens in the asreflowed, mild-aged, and overaged conditions. While the mild aging had only a marginal effect on the fatigue resistance of the interface, overaging was found to significantly degrade the interfacial resistance to fatigue-crack growth, resulting in a lower fatigue threshold and a much earlier onset of the fast fracture. The effects of the overaging were shown to result from the transformation of the interfacial microstructure, which weakened the crack-sliding resistance in the near-threshold regime and embrittled the interface in the high crack-growth rate regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Holden and E.R. Wallach: Int. J. Microcircuits Electronic Packaging, 1999, vol. 22, pp. 80–85.

    CAS  Google Scholar 

  2. U.D. Perera: Microelectr. Reliability, 1999, vol. 39, pp. 391–99.

    Article  Google Scholar 

  3. L. Leichti and A. Skipor: Int. J. Microcircuits Electronic Packaging, 1999, vol. 22, pp. 57–61.

    Google Scholar 

  4. C.H. Zhong and S. Yi: Soldering Surface Mount Technol., 1999, vol. 11, pp. 44–48.

    Article  CAS  Google Scholar 

  5. Q. Yu and M. Shiratori: IEEE Trans. Components, Packaging Manufacturing Technol. Part A, 1997, vol. 20, pp. 266–73.

    CAS  Google Scholar 

  6. J.H. Lau: Circuit World, 1997, vol. 23, pp. 22–25.

    Article  Google Scholar 

  7. J. Lau, K. Gratalo, E. Schneider, T. Marcotte, and T. Baker: Circuit World, 1995, vol. 22, pp. 27–32.

    Article  Google Scholar 

  8. K. Kulojarvi and J. Kivilahti: Microelectr. Int., 1998, vol. 15, pp. 16–19.

    Article  Google Scholar 

  9. R.H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau: Microelectr. Reliability, 1998, vol. 39, pp. 1307–12.

    Google Scholar 

  10. M.J. Loboda, R.C. Camilletti, I.A. Goodman, L.K. White, H.L. Pinch, J. Shaw, V.K. Patel, C.P. Wu, and G.M. Adema: Int. J. Microcircuits Electronic Packaging, 1996, vol. 19, pp. 427–34.

    CAS  Google Scholar 

  11. J.H. Lau: Eng. Fract. Mech., 1993, vol. 45, pp. 643–54.

    Article  Google Scholar 

  12. K.J. Lodge and D.J. Pedder: IEEE Trans. Components, Hybrids and Manufacturing Technol., 1990, vol. 13, pp. 847–55.

    Article  Google Scholar 

  13. M. Amagai: Microelectr. Reliability, 1999, vol. 39, pp. 463–77.

    Article  Google Scholar 

  14. J.H. Lau, C. Chang, T. Chen, D. Cheng, and E. Lao: Circuit World, 1998, vol. 24, pp. 11–25.

    Article  Google Scholar 

  15. D.R. Halk: Surface Mount Technol., 1997, vol. 11, pp. 54–56.

    Google Scholar 

  16. J.S. Hwang: Surface Mount Technol., 1995, vol. 7, pp. 17–18.

    Article  Google Scholar 

  17. H.N. Keller: IEEE Trans. Components, Hybrids Manufacturing Technol., 1981, vol. 4, pp. 132–39.

    Article  Google Scholar 

  18. D. Frear, D. Grives, and J.W. Morris, Jr.: J. Electronic Mater., 1989, vol. 18, pp. 671–80.

    Article  CAS  Google Scholar 

  19. T.S.E. Summers and J.W. Morris, Jr.: ASME J. Electronic Packaging, 1990, vol. 112, pp. 94–99.

    Google Scholar 

  20. S.K. Kang, N.D. Zommer, D.L. Feucht, and R.W. Heckel: IEEE Trans. Parts, Hybrids Packaging, 1977, vol. 13, pp. 318–21.

    Article  Google Scholar 

  21. D.R. Frear, D. Grivas, and J.W. Morris, Jr.: J. Met., 1988, vol. 40 (6), pp. 18–22.

    CAS  Google Scholar 

  22. D.R. Frear, D. Grivas, and J.W. Morris, Jr.: J. Electronic Mater., 1988, vol. 17, pp. 171–80.

    Article  CAS  Google Scholar 

  23. J. Seyyedi: ASME J. Electronic Packaging, 1993, vol. 115, pp. 305–11.

    Google Scholar 

  24. W. Engelmaier and A.I. Attarwala: IEEE Trans. Components, Hybrids Manufacturing Technol., 1989, vol. 12, pp. 284–96.

    Article  Google Scholar 

  25. R.K. Govila, Y.H. Pao, C. Lamer, J. Lau, S. Twerefour, S. Eramus, and S. Dolot: ASME J. Electronic Packaging, 1994, vol. 116, pp. 184–90.

    Google Scholar 

  26. D. Yao and J.K. Shang: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2677–98.

    Article  CAS  Google Scholar 

  27. D. Yao, Z. Zhang, and J.K. Shang: Trans. ASME J. Electronic Packaging, 1996, vol. 118, pp. 45–48.

    Google Scholar 

  28. D. Yao and J.K. Shang: Trans. ASME J. Electronic Packaging, 1997, vol. 119, pp. 114–18.

    Google Scholar 

  29. D. Yao and J.K. Shang: IEEE Trans.: CPMT, 1996, vol. 19, pp. 154–65.

    CAS  Google Scholar 

  30. J.K. Shang and D. Yao: Trans. ASME J. Electronic Packaging, 1996, vol. 118, pp. 170–73.

    Google Scholar 

  31. J.K. Shang: Fatigue’96, Pergamon Press, Elmsford, NY, 1996, vol. 1, pp. 43–54.

    Google Scholar 

  32. D.R. Frear and P.T. Vianco: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1509–23.

    Article  CAS  Google Scholar 

  33. A.J. Sunwoo, J.W. Morris, Jr., and G.K. Lucey, Jr.: Metall. Trans. A, 1992, vol. 23A, pp. 1323–32.

    CAS  Google Scholar 

  34. Z. Mei, A.J. Sunwoo, and J.W. Morris, Jr.: Metall. Trans. A, 1992, vol. 23A, pp. 857–64.

    CAS  Google Scholar 

  35. Pi Lin Liu, Zhengkui Xu, and Jian Ku Shang: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2857–66.

    Article  CAS  Google Scholar 

  36. Z. Mei, P. Callery, D. Fisher, F. Hua, and J. Glazer: Advances in Electronic Packaging, ASME, New York, NY, 1997, vol. 2, pp. 1543–50.

    Google Scholar 

  37. D.B. Bogy: J. Appl. Mech., 1968, vol. 35, pp. 460–66.

    Google Scholar 

  38. D.B. Bogy: Int. J. Solids Struct., 1970, vol. 6, pp. 1287–1313.

    Article  Google Scholar 

  39. D. Munz and Y.Y. Yang: J. Appl. Mech., 1992, vol. 59, pp. 857–61.

    Google Scholar 

  40. J.R. Rice: J. Appl. Mech., 1988, vol. 55, pp. 98–103.

    Article  Google Scholar 

  41. J.W. Hutchinson and Z. Suo: in Advances in Applied Mechanics, J.W. Hutchinson and E.M. Wu, eds., Academic Press, San Diego, CA, 1992, vol. 29, pp. 64–187.

    Google Scholar 

  42. M.D. Thouless: Acta Mater., 1990, vol. 38, pp. 1135–40.

    Article  Google Scholar 

  43. Z. Zhang and J.K. Shang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 205–11.

    Article  CAS  Google Scholar 

  44. P.L. Liu and J.K. Shang: University of Illinois at Urbana-Champaign, Urbana, IL, unpublished research, 1999.

  45. H.N. Keller: IEEE Trans. Comp. Hybrids, Manuf. Technol., 1986, vol. 9, pp. 433–39.

    Article  Google Scholar 

  46. D.R. Frear, F.M. Hosking, and P.T. Vianco: Materials Developments in Microelectronic Packaging Conf. Proc., Montreal, 1991, pp. 229–40.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.L., Shang, J.K. Thermal stability of electroless-nickel/solder interface: Part B. Interfacial fatigue resistance. Metall Mater Trans A 31, 2867–2875 (2000). https://doi.org/10.1007/BF02830352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830352

Keywords

Navigation