Skip to main content
Log in

Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures

  • Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine, papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant, only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate. Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered. The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, M.; Wanner, G.; Zenk, M. H. Intracellular compartmentation of two enzymes of berberine biosynthesis in plant cell cultures. Planta 167:310–320; 1986.

    Article  CAS  Google Scholar 

  • Arakawa, H.; Clark, W. G.; Psenak, M., et al. Purification and characterization of dihydrobenzophenanthridine oxidase fromSanguinaria canadensis cell cultures. Arch. Biochem. Biophys. 299:1–7; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, W.; Zenk, M. H. Formation of both methylenedioxy groups in the alkaloid (S)-stylopine is catalyzed by cytochrome P-450 enzymes. Tetrahedron Lett. 30:5257–5260; 1989.

    Article  CAS  Google Scholar 

  • Bauer, W.; Zenk, M. H. Two methylenedioxy bridge forming cytochrome P-450 dependent enzymes are involved in (S)-stylopine biosynthesis. Phytochemistry 30:2953–2961; 1991.

    Article  CAS  Google Scholar 

  • Blechert, S.; Brodschelm, W.; Hölder, S., et al. The octadecanoid pathway: signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92:4099–4105; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M. J. A brief history of opiates, opioid peptides, and opioid receptors. Proc. Natl. Acad. Sci. USA 90:5391–5393; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Corchete, P.; Yeoman, M. M. Biotransformation of (−)-codeinone to (−)-codeine byPapaver somniferum cells immobilized in reticulate polyurethane foam. Plant Cell Rep. 8:128–131; 1989.

    Article  CAS  Google Scholar 

  • De-Eknamkul, W.; Zenk, M. H. Purification and properties of 1,2-dehydroreticuline reductase fromPapaver somniferum seedlings. Phytochemistry 31:813–821; 1992.

    CAS  Google Scholar 

  • Dittrich, H.; Kutchan, T. M. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc. Natl. Acad. Sci. USA 88:9969–9973; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Dzink, J. L.; Socransky, S. S. Comparative in vivo activity of sanguinarine against oral microbial isolates. Antimicrob. Agents Chemother. 27:663–665; 1985.

    PubMed  CAS  Google Scholar 

  • Eilert, U.; Kurz, W. G. W.; Constabel, F. Stimulation of sanguinarine accumulation inPapaver somniferum cell cultures by fungal elicitors. J. Plant Physiol. 119:65–76; 1985.

    CAS  Google Scholar 

  • Facchini, P. J.; De Luca, V. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J. Biol. Chem. 269:26684–26690; 1994.

    PubMed  CAS  Google Scholar 

  • Facchini, P. J.; De Luca, V. Phloem-specific expression of tyrosine/dopa decarboxylase and isoquinoline alkaloid biosynthesis in opium poppy. Plant Cell 7:1811–1821; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Facchini, P. J.; Johnson, A. G.; Poupart, J., et al. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cultures. Plant Physiol. 111:687–697; 1996a.

    Article  Google Scholar 

  • Facchini, P. J.; Penzes, C.; Johnson, A. G., et al. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol. 112:1669–1677; 1996b.

    Article  Google Scholar 

  • Fairbairn, J. W.; Djote, M. Alkaloid biosynthesis and metabolism in an organelle fraction inPapaver somniferum. Phytochemistry 9:739–742; 1970.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W.; Djote, M.; Paterson, A. The alkaloids ofPapaver somniferum L. VII. Biosynthetic activity of the isolated latex. Phytochemistry 7:2111–2116; 1968a.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W.; Hakim, F.; El Kheir, Y. Alkaloidal storage, metabolism, and translocation in the vesicles ofPapaver somniferum latex. Phytochemistry 13:1133–1139; 1974.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W.; Kapoor, L. The laticiferous vessels ofPapaver somniferum L. Planta Med. 13:1133–1139; 1960.

    Google Scholar 

  • Fairbairn, J. W.; Palmer, J.; Paterson, A. The alkaloids ofPapaver somniferum L. VIII. Organelle activity of the isolated latex. Phytochemistry 7:2117–2121; 1968b.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W.; Wassel, G. The alkaloids ofPapaver somniferum L. I. Evidence for a rapid turnover of the major alkaloids. Phytochemistry 3:253–258; 1964a.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W.; Wassel, G. The alkaloids ofPapaver somniferum L. Biosynthesis in isolated latex. Phytochemistry 3:583–585; 1964b.

    Article  Google Scholar 

  • Farnsworth, N. R. The role of medicinal plants in drug development. In: Krogsgaard-Larsen, P.; Broøgger Christensen, S.; Kofod, H., eds. Natural products and drug development. Copenhagen, Denmark: Munksgaard, International Publishers; 1984:17–30.

    Google Scholar 

  • Farnsworth, N. R.; Morris, R. W. Higher plants—the sleeping giant of drug development. Am. J. Pharm. 148:46–52; 1976.

    PubMed  CAS  Google Scholar 

  • Frenzel, T.; Zenk, M. H. S-Adenosyl-l-methionine:3′ hydroxy-N-methyl-(S)-coclaurine-4′-O-methyltransferase, a regio- and stereo-selective enzyme of the (S)-reticuline pathway. Phytochemistry 29:3505–3511; 1990.

    Article  CAS  Google Scholar 

  • Furuya, T.; Ikuta, A.; Syono, K. Plant tissue culture XV: alkaloids from callus tissue ofPapaver somniferum. Phytochemistry 11:3041–3044; 1972.

    Article  CAS  Google Scholar 

  • Furuya, T.; Nakano, M.; Yoshikawa, T. Biotransformation of (RS)-reticuline and morphinane alkaloids by cell cultures ofPapaver somniferum. Phytochemistry 17:891–893; 1978.

    Article  CAS  Google Scholar 

  • Furuya, T.; Yoshikawa, T.; Taira, M. Biotransformation of codeinone to codeine by immobilized cells ofPapaver somniferum. Phytochemistry 23:999–1001; 1984.

    Article  CAS  Google Scholar 

  • Galewsky, S.; Nessler, C. L. Synthesis of morphinane alkaloids during opium poppy somatic embryogenesis. Plant Sci. 45:215–222; 1986.

    Article  CAS  Google Scholar 

  • Gerardy, R.; Zenk, M. H. Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P-450 enzyme fromPapaver somniferum. Phytochemistry 32:79–86; 1993a.

    Article  Google Scholar 

  • Gerardy, R.; Zenk, M. H. Purification and characterization of salutaridine: NADPH 7-oxidoreductase fromPapaver somniferum. Phytochemistry 34:125–132; 1993b.

    Article  CAS  Google Scholar 

  • Griffing, L. R.; Nessler, C. L. Immunolocalization of the major latex proteins in developing laticifers of opium poppy (Papaver somniferum L.) J. Plant Physiol. 134:357–363; 1989.

    Google Scholar 

  • Hashimoto, T.; Yamada, Y. Alkaloid biogenesis. Molecular cloning. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:257–285; 1994.

    CAS  Google Scholar 

  • Hodges, C. C.; Rapoport, H. Morphinane alkaloids in callus cultures ofPapaver somniferum. J. Nat. Prod. 45:481–485; 1982.

    Article  CAS  Google Scholar 

  • Homeyer, B. C.; Roberts, M. F. Alkaloid sequestration byPapaver somniferum latex. Z. Naturforsch. 39C:876–881; 1984a.

    CAS  Google Scholar 

  • Homeyer, B. C.; Roberts, M. F. Alkaloid accumulation inPapaver somniferum latex. Z. Naturforsch. 39C:1034–1037; 1984b.

    CAS  Google Scholar 

  • Hsu, A. F. Effect of protein synthesis inhibitors on cell growth and alkaloid production in cell cultures ofPapaver somniferum. J. Nat. Prod. 44:408–414; 1981.

    Article  CAS  Google Scholar 

  • Ikuta, A.; Syono, K.; Furuya, T. Alkaloids of callus tissues and redifferentiated plantlets of the Papaveraceae. Phytochemistry 13:2175–2179; 1974.

    Article  CAS  Google Scholar 

  • Kamo, K. K.; Kimoto, W.; Hsu, A.-F., et al. Morphinane alkaloids in cultured tissues and redifferentiated organs ofPapaver somniferum. Phytochemistry 21:219–222; 1982.

    Article  CAS  Google Scholar 

  • Kutchan, T. M.; Ayabe, S.; Krueger, R. J., et al. Cytodifferentiation and alkaloid accumulation in cultured cells ofPapaver bracteatum. Plant Cell Rep. 2:281–284; 1983.

    Article  CAS  Google Scholar 

  • Kutchan, T. M.; Rush, M.; Coscia, C. J. Subcellular localization of alkaloids and dopamine in different vacuolar compartments ofPapaver bracteatum. Plant Physiol. 81:161–166; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin, J. C.; Munro, D. The effect of fungal colonization on the morphine production of poppyPapaver somniferum capsules. J. Agric. Sci. 98:679–686; 1982.

    CAS  Google Scholar 

  • Lenz, R.; Zenk, M. H. Purification and properties of codeinone reductase (NADPH) fromPapaver somniferum cell cultures and differentiated plants. Eur J. Biochem. 233:132–139; 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, R.; Zenk, M. H. Acetyl coenzyme A: salutaridinol-7-O-acetyltransferase fromPapaver somniferum plant cell cultures. J. Biol. Chem. 270:31091–31096; 1995b.

    Article  PubMed  CAS  Google Scholar 

  • Lockwood, G. B. Alkaloids of cell suspensions derived from fourPapaver sp. and the effect of temperature stress. Z. Pflanzenphysiol. 114:361–363; 1984.

    CAS  Google Scholar 

  • Morris, P.; Fowler, M. Growth and alkaloid content of cell suspension cultures ofPapaver somniferum. Planta Med. 39:284–285; 1980.

    Google Scholar 

  • Müller, M. J.; Zenk, M. H. The norcoclaurine pathway is operative in berberine biosynthesis inCoptis japonica. Planta Med. 58:524–527; 1992.

    Article  PubMed  Google Scholar 

  • Nessler, C. L. Somatic embryogenesis of the opium poppy. Physiol. Plant. 55:453–458; 1982.

    Article  Google Scholar 

  • Nessler, C. L. Comparative analysis of the major latex proteins of opium poppy. J. Plant Physiol. 132:588–592; 1988.

    CAS  Google Scholar 

  • Nessler, C. L.; Allen, R. D.; Galewsky, S. Identification and characterization of latex-specific proteins in opium poppy. Plant Physiol. 79:499–504; 1985.

    PubMed  CAS  Google Scholar 

  • Nessler, C. L.; Mahlberg, P. G. Laticifers in stamens ofPapaver somniferum L. Planta 129:83–85; 1976.

    Article  Google Scholar 

  • Nessler, C. L.; Mahlberg, P. G. Cell wall perforations in laticifers ofPapaver somniferum L. Bot. Gaz. 138:402–408; 1977a.

    Article  Google Scholar 

  • Nessler, C. L.; Mahlberg, P. G. Ontogeny and cytochemistry of alkaloidal vesicles in laticifers ofPapaver somniferum L. (Papaveraceae) Am. J. Bot. 64:541–551; 1977b.

    Article  Google Scholar 

  • Nessler, C. L.; Mahlberg, P. G. Ultrastructure of laticifers in redifferentiated organs on callus fromPapaver somniferum (Papaveraceae). Can. J. Bot. 57:675–685; 1979.

    Article  Google Scholar 

  • Nessler, C. L.; Vonder Haar, R. A. Cloning and expression analysis of DNA sequences for the major latex protein of opium poppy. Planta 180:487–491; 1990.

    Article  CAS  Google Scholar 

  • Pontovich, V. E. Sterile culture of the placenta of poppy as a means for study of the formation of seeds and their synthesis of reserve products. Fiziol. Rast. 6:313–320; 1959.

    Google Scholar 

  • Pontovich, V. E. Placenta and seed culture under sterile conditions as a method for studying the metabolism of developing fruits. Izv. Akad. Nauk SSSR, Ser. Biol. 2:233–238; 1961.

    Google Scholar 

  • Roberts, M. F. Polyphenolases in the 1000g fractions ofPapaver somniferum latex. Phytochemistry 10:3021–3027; 1971.

    Article  CAS  Google Scholar 

  • Roberts, M. F. Oxidation of tyrosine byPapaver somniferum latex. Phytochemistry 13:119–123; 1974.

    Article  CAS  Google Scholar 

  • Roberts, M. F.; Antoun, M. D. The relationship betweenl-dopa decarboxylase in the latex ofPapaver somniferum and alkaloid formation. Phytochemistry 17:1083–1087; 1978.

    Article  CAS  Google Scholar 

  • Roberts, M. F.; McCarthy, D.; Kutchan, T. M., et al. Localization of enzymes and alkaloidal metabolites inPapaver latex. Arch. Biochem. Biophys. 222:599–564; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rueffer, M.; Zenk, M. H. Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Z. Naturforsch. 42C:319–332; 1987a.

    Google Scholar 

  • Rueffer, M.; Zenk, M. H. Enzymatic formation of protopines by a microsomal cytochrome P-450 system ofCorydalis vaginans. Tetrahedron Lett. 28:5307–5310; 1987b.

    Article  CAS  Google Scholar 

  • Rueffer, M.; Zumstein, G.; Zenk, M. H. Partial purification of S-adenosyl-l-methionine: (S)-tetrahydroprotoberberine-cis-N-methyltransferase from suspension cultured cells ofEschscholtzia andCorydalis. Phytochemistry 29:3727–3733; 1990.

    Article  CAS  Google Scholar 

  • Rush, M. D.; Kutchan, T. M.; Coscia, C. J. Correlation of the appearance of morphinan alkaloids and laticifer cells in germinatingPapaver bracteatum seedlings. Plant Cell Rep. 4:237–240; 1985.

    Article  CAS  Google Scholar 

  • Sato, F.; Tsujita, T.; Katagiri, Y., et al. Purification and characterization of S-adenosyl-l-methionine: norcoclaurine-6-O-methyltransferase fromCoptis japonica cells. Eur. J. Biochem. 225:125–131; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, H.-M.; Zenk, M. H. Partial purification and characterization of dihydrobenzophenanthridine oxidase fromEschscholtzia californica cell suspension cultures. Plant Cell Rep. 7:43–46; 1988.

    Article  CAS  Google Scholar 

  • Sheldrake, A. Cellulase in latex and its possible significance in cell differentiation. Planta 89:82–84; 1969.

    Article  CAS  Google Scholar 

  • Sheldrake, A.; Moir, G. A cellulase inHevea latex. Physiol. Plant. 23:267–277; 1970.

    Article  CAS  Google Scholar 

  • Staba, E. J.; Zito, S.; Amin, M. Alkaloid production fromPapaver tissue cultures. J. Nat. Prod. 45:256–262; 1982.

    Article  CAS  Google Scholar 

  • Stadler, R.; Kutchan, T. M.; Loeffler, S., et al. Revision of the early steps of reticuline biosynthesis. Tetrahedron Lett. 28:1251–1254; 1987.

    Article  CAS  Google Scholar 

  • Stadler, R.; Kutchan, T. M.; Zenk, M. H. Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis. Phytochemistry 28:1083–1086; 1989.

    Article  CAS  Google Scholar 

  • Steffens, P.; Nagakura, N.; Zenk, M. H. Purification and characterization of the berberine bridge enzyme fromBerberis beaniana cell cultures. Phytochemistry 24:2577–2583; 1985.

    Article  CAS  Google Scholar 

  • Tam, W.; Constabel, F.; Kurz, W. G. W. Codeine from cell suspension cultures ofPapaver somniferum. Phytochemistry 19:486–487; 1980.

    Article  CAS  Google Scholar 

  • Tanahashi, T.; Zenk, M. H. Elicitor induction and characterization of microsomal protopine-6-hydroxylase, the central enzyme in benzophenanthridine alkaloid biosynthesis. Phytochemistry 29:1113–1122; 1990.

    Article  CAS  Google Scholar 

  • Thureson-Klein, A. Observations on the development and fine structure of the articulated laticifers ofPapaver somniferum L. Ann. Bot. 34:751–759; 1970.

    Google Scholar 

  • Williams, R. D.; Ellis, B. E. Alkaloids fromAgrobacterium rhizogenes-transformedPapaver somniferum cultures. Phytochemistry 32:719–723; 1993.

    Article  CAS  Google Scholar 

  • Wilson, M. L.; Coscia, C. J. Studies on the early stages ofPapaver alkaloid biogenesis. J. Am. Chem. Soc. 97:431–432; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T.; Furuya, T. Regeneration and in vitro flowering of plants derived from callus cultures of opium poppy (Papaver somniferum). Experientia 39:1031–1033; 1983.

    Article  Google Scholar 

  • Zenk, M. H.; Rueffer, M.; Amann, M., et al. Benzylisoquinoline biosynthesis by cultured plant cells and isolated enzymes. J. Nat. Prod. 48:725–738; 1985.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchini, P.J., Bird, D.A. Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cell.Dev.Biol.-Plant 34, 69–79 (1998). https://doi.org/10.1007/BF02823126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823126

Key words

Navigation