Skip to main content
Log in

A comparison of methods for direct gene transfer into maize (Zea mays L.)

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Techniques for transforming intact tissues of cereals were evaluated for their efficacy in transforming immature embryos and Type II callus of maize (Zea mays L.). The techniques used were particle bombardment, tissue electroporation, tissue electrophoresis, and silicon carbide fibers. Each method was assessed in terms of transient β-glucuronidase (GUS) expression. High levels of GUS expression were observed in A188 Type II callus using both tissue electroporation and particle bombardment, with means of 417.8 and 954.5 blue expression units (beu) per g fresh weight (FW) callus, respectively. Only particle bombardment resulted in high transient gene expression in immature embryos, with a mean transformation frequency of 34.8 b.e.u. per embryo. Very low levels of GUS expression were achieved with silicon carbide-mediated gene transfer, even when employing tissues used in the original publication (Black Mexican Sweet suspension cells). GUS expression was not obtained following tissue electrophoretic gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, A., Cocking, E. C.; Thomspon, J. A. Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4:1087–1090; 1986.

    Article  Google Scholar 

  • Ahokas, H. Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor. Appl. Genet. 77:469–472; 1989.

    Article  CAS  Google Scholar 

  • Akella, V.; Lurquin, P. F. Expression in cowpea seedlings of chimeric, transgenes after electroporation into seed-derived embryos. Plant Cell Rep. 12:110–117; 1993.

    Article  CAS  Google Scholar 

  • Alfinito, S. C. H.; Dietrich, P. S.; Murry, L. E., et al. Plant tissue transformation. European Patent Application No. 93810412.2; 1993.

  • Armstrong, C. L. Development and availability of germplasm with high Type II culture formation response. Maize Genet. Coop. Newl. 65:92–93; 1991.

    Google Scholar 

  • Armstrong, C. L.; Parker, G. B.; Pershing, J. C., et al. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein fromBacillus thuringiensis. Crop Sci. 35:550–557; 1995.

    Article  Google Scholar 

  • Chibbar, R. N.; Kartha, K. K.; Datla, R. S. S., et al. The effect of different promoter-sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells. Plant Cell Rep. 12:506–509; 1993.

    Article  CAS  Google Scholar 

  • Christensen, A. H.; Sharrock, R. A.; Quail, P. H. Maize polyubiquitin genes—structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18:675–689; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27; 1995.

    Article  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S., et al. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica 18:659–668; 1975.

    Google Scholar 

  • Dekeyser, R. A.; Claes, B.; De Rycke, R. M. U., et al. Transient gene expression in intact and organized rice tissues. Plant Cell 2:591–602; 1990.

    Article  PubMed  CAS  Google Scholar 

  • De la Pena, A.; Lörz, H.; Schell, J. Transgenic rye plants obtained by injecting young floral tillers. Nature 325:274–276; 1987.

    Article  Google Scholar 

  • Dennehey, B. K.; Peterson, W. L.; Ford-Santino, C., et al. Comparison of selective agents for use with the selectable marker genebar in maize transformation. Plant Cell Tissue Organ Cult. 36:1–7; 1994.

    Article  CAS  Google Scholar 

  • D'Halluin, K.; Bonne, E.; Bossut, M., et al. Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505; 1992.

    Article  PubMed  Google Scholar 

  • Dong, J.; Teng, W.; Buchholz, W., et al.Agrobacterium-mediated transformation of Javanica rice. Mol. Biol. 2:267–276; 1996.

    CAS  Google Scholar 

  • Finer, J. J.; Vain, P.; Jones, M. W., et al. Development of the particle inflow gun for DNA delivery into plant cells. Plant Cell Rep. 11:323–328; 1992.

    Article  CAS  Google Scholar 

  • Frame, B. R.; Drayton, P. R.; Bagnall, S. V., et al. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6:941–948; 1994.

    Article  CAS  Google Scholar 

  • Frearson, E. M.; Power, J. B.; Cocking, E. C. The isolation, culture and regeneration ofPetunia leaf protoplasts. Dev. Biol. 33:130–137; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C., et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.; Taylor, L. P.; Walbot, V. Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Griesbach, R. J. An improved method for transforming plants through electrophoresis. Plant Sci. 102:81–89; 1994.

    Article  CAS  Google Scholar 

  • Hiei, Y.; Ohta, S.; Komari, T., et al. Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas, P. J. J.; Schilperoort, R. A. The Ti-plasmid ofAgrobacterium tumefaciens: a natural genetic engineer. Trends Biochem. Sci. 10:307–309; 1985.

    Article  CAS  Google Scholar 

  • Ishida, Y.; Saito, H.; Ohta, S., et al. High efficiency transformation of maize (Zea mays. L.) mediated byAgrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.

    Article  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Kaeppler, H. F.; Gu, W.; Somers, D. A., et al. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9:415–418; 1990.

    Article  CAS  Google Scholar 

  • Koziel, M. G.; Belandi, G. L.; Bowman, C., et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Li, L.; Qu, R.; de Kochko, A., et al. An improved rice transformation system using the biolistic method. Plant Cell Rep. 12:250–255; 1993.

    Article  Google Scholar 

  • Lowe, K.; Bown, B.; Hoerster, G., et al. Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13:677–686; 1995.

    Article  CAS  Google Scholar 

  • McCabe, D.; Chrislou, P. Direct DNA transfer using electrical discharge particle acceleration (ACCELL Technology). Plant Cell Tissue Organ Cult. 33:227–236; 1993.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Murry, L. E.; Elliot, L. G.; Capitant, S. A., et al. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11:1559–1564; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Murry, L. E.; Pleu, S. C.; Dietrich, P.S., et al. Transformation in maize using low voltage electric current. In: Bajaj, Y. P. S., ed. Maize: biotechnology in agriculture and forestry Vol. 25. New York: Springer-Verlag; 1994:252–261.

    Google Scholar 

  • Neuhaus, G.; Spangenberg, G.; Plant transformation by microinjection technique. Physiol Plant. 79:213–217; 1990.

    Article  CAS  Google Scholar 

  • Omirulleh, S.; Abraham, M.; Golovkin, M., et al. Activity of a chimeric promoter with the doubled CaMV35S enhancer element in protoplast-derived cells and transgenic plants of maize. Plant Mol. Biol. 21:415–428; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Pescitelli, S. M.; Sukhapinda, K. Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 14:712–716; 1995.

    Article  CAS  Google Scholar 

  • Potrykus, I.; Saul, M. W.; Petruska, J., et al. Direct gene transfer to cells of a graminaceous monocot. Mol. & Gen. Genet. 199:183–188; 1985.

    Article  CAS  Google Scholar 

  • Rech, E. L.; Vainstein, M. H.; Davey, M. R. An electrical particle acceleration gun for gene transfer into cells. Technique 3:143–149; 1991.

    Google Scholar 

  • Reggiardo, M. I.; Arana, J. L.; Orsaria, L. M., et al. Transient transformation of maize tissues by microprojectile bombardment. Plant Sci. 75:237–243; 1991.

    Article  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sheridan, W. F. Growth of corn cells in culture. J. Cell Biol. 67:396a; 1975.

    Google Scholar 

  • Songstad, D. D.; Armstrong, C. L., Petersen, W. L., et al. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell. Dev. Biol. 32P:179–183; 1996.

    Google Scholar 

  • Songstad, D. D.; Halaka, F. G.; DeBoer, D. L., et al. Transgenic expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tissue Organ Cult. 33:195–201; 1993.

    Article  CAS  Google Scholar 

  • Songstad, D. D.; Somers, D. A.; Griesbach, R. J. Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult. 40:1–5; 1995.

    Article  CAS  Google Scholar 

  • Southgate, E. M. Genetic manipulation ofZea mays L., UK: University of Nottingham, U.K.; 1996. PhD Thesis.

    Google Scholar 

  • Southgate, E. M.; Davey, M. R.; Power, J. B., et al. Factors affecting the genetic engineering of plants by microprojectile, bombardment. Biotechnol. Adv. 13:631–651; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Southgate, E. M.; Westcott, R. J.; Power, J. B., et al.Agrobacterium-mediated GUS expression in maize tissues with evidence for a bacteriocidal effect in immature embryos. Plant Tissue Cult. 6:25–34; 1996.

    Google Scholar 

  • Tsong, T. Y. Time sequence of molecular events in electroporation. In: Chang, D. C.; Chassy, B. M.; Saunders, J. A., et al., eds. Guide to electroporation and electrofusion. London: Academic Press; 1992:47–62.

    Google Scholar 

  • Walters, D. A., Vetsch, C. S.; Potts, D. E., et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18:189–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G.; Monajembashi, S.; Greulich, K. O., et al. Genetic manipulation of plant cells and organelles with a laser microbeam. Plant Cell Tissue Organ Cult. 12:219–222; 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southgate, E.M., Davey, M.R., Power, J.B. et al. A comparison of methods for direct gene transfer into maize (Zea mays L.). In Vitro Cell.Dev.Biol.-Plant 34, 218–224 (1998). https://doi.org/10.1007/BF02822711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822711

Key words

Navigation