Skip to main content
Log in

Computer simulation of a long-ranged Ising antiferromagnet in one dimension.

II.–Inverse-square-power law

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Let us consider a one-dimensionalS=1/2 Ising lattice with spin variables {s j/j ∈Z} and interacting via a long-ranged pair potential possessing translational invariance and defined by an inverse-power lawW ik =S j Φ jk S k , Φ jk =f(|jk|),f(n) =qɛn −p. Here ε is a positive energy to be used as a scaling factor andq=±1 determines the ferromagnetic or antiferromagnetic character of the interaction; in contrast to the ferromagnetic case, the antiferromagnetic one was seldom studied. Continuing along the lines of our previous work (Nuovo Cimento B,83, 188 (1984)), we carried out Monte Carlo calculations for the caseq=+1,p=2, and found results suggesting a Thouless transition at the reduced temperaturek B T c/ε=0.21875±0.00625, and also noticed a remarkable qualitative similarity between the two potential models. In the absence of more stringent rigorous results, we conjecture that antiferromagnetic potential models defined by 1≤p≤2 can support phase transitions to ordered states.

Riassunto

Si consideri un reticolo di Ising unidimensionale conS=1/2, variabili di spin {S j/j∈Z} ed interazioni attraverso un potenziale a coppia che possieda invarianza traslazionale e sia definito da una potenza inversa della distanzaW ik =S j Φ jk S k , Φ jk =f(|jk|),f(n) =qɛn −p. Qui ε è un'energia positiva, usata come fattore di scala, eq=±1 determina il carattere ferromagnetico od antiferromagnetico dell'interazione; a differenza dal caso ferromagnetico, quello antiferromagnetico è stato raramente studiato. Continuando lungo le linee del nostro precedente lavoro (vediNuovo Cimento B,83, 188 (1984)), abbiamo eseguito calcoli di simulazione Monte Carlo per il casoq=+1,p=2, trovando risultati che suggeriscono una transizione alla Thouless alla temperatura ridottak B T c/ε=0.21875±0.00625; is osserva inoltre una notevole somiglianza qualitativa tra i due modelli di potenziale. In assenza di risultati rigorosi piú stringenti, congetturiamo che modelli di potenziale antiferromagnetici definiti da 1≤p≤2 possano produrre transizioni di fase a stati ordinati.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rushbrooke andH. Ursell:Proc. Cambridge Philos. Soc.,44, 263 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. F. Dobson:J. Math. Phys. (N. Y.),10, 40 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  3. N. D. Mermin andH. Wagner:Phys. Rev. Lett.,17, 1133 (1966).

    Article  ADS  Google Scholar 

  4. N. D. Mermin:J. Math. Phys. (N. Y.),8, 1061 (1967).

    Article  ADS  Google Scholar 

  5. B. C. Freasier andL. K. Runnels:J. Chem. Phys.,58, 2963 (1973).

    Article  ADS  Google Scholar 

  6. M. Kac, G. E. Uhlenbeck andP. C. Hemmer:J. Math. Phys. (N. Y.),4, 216 (1963);b)M. Kac andE. Helfand:J. Math. Phys. (N. Y.),4, 1978 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Katsura:Prog. Theor. Phys.,13, 571 (1955);b)H. N. V. Temperley:Proc. Phys. Soc. London, Sect. A,67, 23 (1955).

    Article  ADS  MATH  Google Scholar 

  8. D. Ruelle:Commun. Math. Phys.,9, 267 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. G. Gallavotti andS. Miracle-Sole:Commun. Math. Phys.,5, 317 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R. B. Griffiths:Commun. Math. Phys.,6, 121 (1967).

    Article  ADS  Google Scholar 

  11. F. J. Dyson:Commun. Math. Phys.,12, 91 (1969);b)F. J. Dyson:Commun. Math. Phys.,12, 212 (1969).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F. J. Dyson:Commun. Math. Phys.,21, 269 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. B. Rogers andC. J. Thompson:J. Stat. Phys.,25, 669 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  14. V. I. Kolomytsev andA. V. Rokhlenko:Theor. Math. Phys.,35, 487 (1978).

    Article  Google Scholar 

  15. J. Fröhlich andT. Spencer:Commun. Math. Phys.,84, 87 (1982).

    Article  ADS  MATH  Google Scholar 

  16. D. Rapaport andN. E. Frenkel:Phys. Lett. A,28, 405 (1968).

    Article  ADS  Google Scholar 

  17. J. F. Nagle andJ. C. Bonner:J. Phys. C,3, 352 (1970).

    Article  ADS  Google Scholar 

  18. G. Stell:Phys. Rev. B,8, 1271 (1973).

    Article  ADS  Google Scholar 

  19. D. Iagolnitzer andB. Souillard:Phys. Rev. A,16, 1700 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Naimzhanov:Theor. Math. Phys.,38, 64 (1979);b)J. Z. Imbrie:Commun. Math. Phys.,85, 491 (1982).

    Article  MathSciNet  Google Scholar 

  21. N. P. Silva, A. S. T. Pires andJ. R. F. Ferreira:Phys. Status Solidi B,99, K23 (1980).

    Article  ADS  Google Scholar 

  22. B. G. S. Doman:Phys. Status Solidi B,103, K169 (1981).

    Article  ADS  Google Scholar 

  23. E. Brezin, J. Zinn-Justin andJ. C. Le Guillou:J. Phys. A,9, L119 (1976).

    Article  ADS  Google Scholar 

  24. M. Suzuki:Phys. Lett. A,42, 5 (1972).

    Article  ADS  Google Scholar 

  25. A. K. Bassiouny:J. Phys. A,14, 227 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Takahashi:J. Phys. Soc. Jpn.,50, 1854 (1981).

    Article  ADS  Google Scholar 

  27. G. S. Joyce:Phys. Rev.,146, 349 (1966).

    Article  ADS  Google Scholar 

  28. P. W. Anderson andG. Yuval:Phys. Rev. Lett.,23, 89 (1969);b)P. W. Anderson, G. Yuval andD. R. Hamann:Solid State Commun.,8, 1033 (1970);c)P. W. Anderson:J. Phys. C,3, 2436 (1970);d)G. Yuval andP. W. Anderson:Phys. Rev. B,1, 1522 (1970);e)P. W. Anderson, G. Yuval andD. R. Hamann:Phys. Rev. B,1, 4464 (1970).

    Article  ADS  Google Scholar 

  29. D. J. Thouless:Phys. Rev.,187, 732 (1969).

    Article  ADS  Google Scholar 

  30. A. Ojo:Phys. Lett. A,45, 313 (1973).

    Article  ADS  Google Scholar 

  31. J. L. Cardy:J. Phys. C,14, 1407 (1981).

    Google Scholar 

  32. J. Bhattacharjee, C. Chakravarty, J. L. Richardson andD. J. Scalapino:Phys. Rev. B,24, 3862 (1981).

    Article  ADS  Google Scholar 

  33. B. Simon andA. D. Sokal:J. State Phys.,25, 679 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. D. Sokal:Commun. Math. Phys.,86, 327 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Oguchi:Prog. Theor. Phys.,64, 1107 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. P. Bak andR. Bruinsma:Phys. Rev. Lett.,49, 249 (1982);b)R. Bruinsma andP. Bak:Phys. Rev. B,27, 5824 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Aubry:J. Phys. C,16, 2497 (1983).

    Article  ADS  Google Scholar 

  38. A. A. Kerimov:Theor. Math. Phys.,58, 310 (1984).

    Article  MathSciNet  Google Scholar 

  39. J. M. Rabin:Phys. Rev. B,22, 2027, 2429 (1980).

    Article  ADS  Google Scholar 

  40. S. Romano:Nuovo Cimento B,83, 188 (1984).

    Article  ADS  Google Scholar 

  41. I. S. Gradshteyn andI. M. Ryzhik:Table af Integrals, Series, and Products (Academic Press, New York, N. Y., 1980).

    Google Scholar 

  42. P. Epstein:Math. Ann. (N. Y.),56, 615 (1903);63, 205 (1907).

    Article  MATH  Google Scholar 

  43. P. P. Ewald:Ann. Phys. (Leipzig), 64, 253 (1921).

    Article  ADS  MATH  Google Scholar 

  44. M. P. Tosi:Solid State Phys.,16, 1 (1964).

    Google Scholar 

  45. C. Kawabata:Phys. Lett. A,69, 211 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Gruber, C. Lugrin andP. A. Martin:Helv. Phys. Acta,51, 829 (1979);b)C. Gruber, C. Lugrin andP. A. Martin:J. State Phys.,22, 193 (1980).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, S. Computer simulation of a long-ranged Ising antiferromagnet in one dimension.. Nuov Cim B 89, 1–13 (1985). https://doi.org/10.1007/BF02728500

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728500

Navigation