Skip to main content
Log in

Cyanide action in plants — from toxic to regulatory

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Recent biochemical and genetic studies on hydrogen cyanide (HCN) metabolism and function in plants were reviewed. The potential sources of endogenous cyanide and the pathways of its detoxification are outlined and the possible signaling routes by which cyanide exerts its physiological effects are discussed. Cyanide is produced in plant tissues as the result of hydrolysis of cyanogenic compounds and is also released as a co-product of ethylene biosynthesis. Most cyanide produced in plants is detoxified primarily by the key enzyme β-cyanoalanine synthase. The remaining HCN at non-toxic concentration may play a role of signaling molecule involved in the control of some metabolic processes in plants. So, HCN may play a dual role in plants, depending on its concentration. It may be used in defense against herbivores at high toxic concentration and may have a regulatory function at lower concentration. Special attention is given to the action of HCN during biotic and abiotic stresses, nitrate assimilation and seed germination. Intracellular signaling responses to HCN involve enhancement of reactive oxygen species (ROS) generation and the expression of cyanide-insensitive alternative oxidase (AOX) and ACC synthase (ACS) genes. The biochemical and cellular mechanisms of these responses are, however, not completely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ACC:

1-aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

ACS6 :

ACC synthase gene

AFGC:

Arabidopsis Functional Genomic Facility

AOX:

alternative oxidase

APX:

ascorbate peroxidase

AtRDH:

Arabidopsis thaliana rhodanese homologue protein

β-CAS:

β-cyanoalanine synthase

CTR1:

Raf-like ser/thr kinase

CS:

cysteine synthase (O-acetylserine sulfhydratase)

2,4-D:

2,4-dichlorophenoxyacetic acid

GA:

gibberellins

ga-1 :

GA deficient mutant

GR:

glutathione reductase

HR:

hypersensitive response

IAA:

indole acetic acid

MAPK:

mitogen activated protein kinase

NF- K B:

redox-sensitive nuclear factor

NR:

nitrate reductase

PCD:

programmed cell death

PPP:

pentose phosphate pathway

ROS:

reactive oxygen species

RuBP:

ribulose 1,5-bisophsphate

TMV:

tobacco mosaic virus

TVCV:

turnip vein clearing virus

SAM:

S-adenosylmethionine

References

  • Achard P., Wriezen W.H., Van Der Straeten D., Harberd N.P. 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 15: 2816–2825.

    Article  PubMed  CAS  Google Scholar 

  • Alscher- Herman R., Musgrave M., Leopold A. C. and Khan A.A. 1981. Respiratory changes with stratification of pear seeds. Physiol. Plant. 52: 156–160.

    Article  Google Scholar 

  • Arteca J.M., Arteca R. N. 1999. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol. Biol. 39: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Bailly Ch. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93–107.

    Article  CAS  Google Scholar 

  • Beesley S.G., Compton S.G.and Jones D.A. 1985. Rhodanese in insects. J. Chem. Ecol. 11: 45–50.

    Article  CAS  Google Scholar 

  • Bogatek R., Rychter A. 1984. Respiratory activity of apple seed during dormancy removal and germination. Physiol. Veg. 22: 181–191.

    Google Scholar 

  • Bogatek R., Lewak St. 1988. Effect of cyanide and cold treatment on sugar catabolism in apple seeds during dormancy removal. Physiol. Plant. 73: 406–411.

    Article  CAS  Google Scholar 

  • Bogatek R., Lewak St. 1991. Cyanide controls enzymes involved in lipid and sugar catabolism in dormant apple embryos during culture. Physiol. Plant. 83: 422–426.

    Article  CAS  Google Scholar 

  • Bogatek R., Come D., Corbineau F., Picard M.-A., Żarska-Maciejewska B., Lewak St. 1999. Sugar metabolism as related to the cyanide-mediated elimination of dormancy in apple embryos. Plant Physiol. Biochem. 37: 577–585.

    CAS  Google Scholar 

  • Bogatek R., Sykała A., Krysiak C. 2004. Cyanide-induced ethylene biosynthesis in dormant apple embryos. Acta Physiol. Plant. 26 (suppl.). 16.

    Google Scholar 

  • Bogatek R., Gawrońska H., Oracz K. 2003. Involvement of oxidative stress and ABA in CN-mediated elimination of embryonic dormancy in apple. In: Nicolas G., Bradford K.J., Come D. and Pritchard H.W. (eds.) The Biology of seeds: Recent research Adv. pp: 211–216.

  • Bogatek R., Gniazdowska A. 2006. Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiol. Plant. 28: 281–287.

    Article  Google Scholar 

  • Bordo D., Bork P. 2002. The rhodanese/Cdc25 phosphate superfamily-sequence-structure-function relations. EMBO Reports 3: 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F., Etheridge N., Schaller G. E. 2005. Ethylene signal transduction. Ann. Bot. 95: 901–915.

    Article  PubMed  CAS  Google Scholar 

  • Calvo A.P., Nicolas C., Lorenzo O., Nicolas G., Rodriguez D. 2004. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Regul. 23: 44–53.

    Article  CAS  Google Scholar 

  • Chivasa S., Carr J.P. 1998. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydrolase. Plant Cell 10: 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Desikan R., Mackerness S.A.H., Hancock J.T., Neill S.J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyńska U., Gniazdowska A., Babanczyk T., Bogatek R. 2005. Cyanide and nitric oxide as a regulatory factors of seed germination. Proc. of 2nd Conf. of Pol. Soc. Plant Exp. Biol. 26–29 Sept., Poznań, Poland

  • Dziewanowska K., Lewak St. 1982. Hydrogen cyanide and cyanogenic compounds in seeds. V. Effects of cyanide and azide on germination of apple embryos in relation to their dormancy. Physiol. Veg. 20: 171–177

    CAS  Google Scholar 

  • Dziewanowska K., Niedźwiedź I., Chodelska I., Lewak St. 1979a. Hydrogen cyanide and cyanogenic compounds in seeds. I. Influence of hydrogen cyanide on germination of apple embryos. Physiol. Veg. 17: 279–303.

    Google Scholar 

  • Dziewanowska K., Niedźwiedź I., Lewak St. 1979b. Hydrogen cyanide and cyanogenic compounds in seeds. II. Changes in free HCN level in apple seeds during stratification. Physiol. Veg. 17: 681–686.

    CAS  Google Scholar 

  • Dziewanowska K. 1983. Biological role of cyanogenic compounds and of hydrogen cyanide (in Polish). Postepy Biochem. 29: 227–238.

    PubMed  CAS  Google Scholar 

  • Echevarria C., Maurino S.G.and Maldonado J.M. 1984. Reversible inactivation of maize leaf nitrate reductase. Phytochemistry 23: 2155–2158.

    Article  CAS  Google Scholar 

  • Esashi Y., Isuzugawa K., Matsuyama S., Ashino H., Hasegawa R. 1991. Endogenous evolution of HCN during pre-germination periods in many seed species. Physiol. Plant. 83: 27–33.

    Article  CAS  Google Scholar 

  • Fontaine O., Huault C., Pavis N., Billard J.P. 1994. Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol. Bioch. 32: 677–683.

    CAS  Google Scholar 

  • Gleadow R.M., Woodrow I.E. 2002. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 28: 1301–1313.

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A., Bogatek R. 2005. Allelopatic interactions between plants. Multi site action of allelochemicals. Acta Physiol. Plant. 27: 395–407.

    Article  CAS  Google Scholar 

  • Grossmann K. 1996. A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol. Plant. 97: 772–775.

    Article  CAS  Google Scholar 

  • Grossmann K. 2003. Mediation of herbicide effects by hormone interactions. J. Plant Growth Reg. 22: 109–122.

    Article  CAS  Google Scholar 

  • Grossmann K., Kwiatkowski J. 1995. Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinoclorac in barnyard grass. Pest. Bioch. Physiol. 51: 150–160.

    Article  CAS  Google Scholar 

  • Gruhnert C. Biehl B., Selmar D. 1994. Compartmentation of cyanogenic glucoside and their degrading enzymes. Planta 195: 36–42.

    Article  CAS  Google Scholar 

  • Gunasekar P.G., Borowitz J.L.and Isom G.E. 1998. Cyanide-induced generation of oxidative species: Involvement of nitric oxide synthase and cyclooxygenase-3. J. Pharmacol. Exp. Ther. 285:236–241.

    PubMed  CAS  Google Scholar 

  • Hasegawa R., Tada T., Torii Y., Esashi Y. 1994. Presence of β-cyanoalanine synthase in unimbibed dry seeds and its activation by ethylene during pre-germination. Physiol. Plant. 1: 141–146.

    Article  Google Scholar 

  • Hatzfeld Y., Saito K. 2000. Evidence for existence of rhodanese (thiosulfate: cyanide sulfurtransferase) in plants: preliminary characterization of two rhodanese cDNAs from Arabidopsis thaliana. FEBS Letters 470: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Hippeli S., Heiser I., Elstner E.F. 1999. Activated oxygen and free oxygen radicals in pathology: New insights and analogies between animals and plants. Plant Physiol. Biochem. 37: 167–178.

    Article  CAS  Google Scholar 

  • Huang Y., Li H., Hutchison C.E., Laskey J., Kieber J.J. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221–233.

    Article  PubMed  CAS  Google Scholar 

  • Hucklesby D.P., Dowling M.J., Hewitt E.J. 1982. Cyanide formation from glyoxylate and hydroxylamine catalyzed by extracts of higher-plant leaves. Planta 156: 487–491.

    Article  CAS  Google Scholar 

  • Inderjit, Duke S.O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Jensen M.S., Ahlemeyer B., Ravati A., Thakur P., Mennel H-D., Krieglstein J. 2002. Preconditioning-induced protection against cyanide-induced neurotoxicity is mediated by preserving mitochondrial function. Neurochem. Int. 40: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Jones P.R., Andersen M.D., Nielsen J.S., Hoj P.B., Moller B.L. 2000. The biosynthesis, degradation, transport and possible function of cyanogenic glycosides. In: Romero J.T., Ibrahim R., Varin L, De Luca V. (eds.). Evolution of Metabolic Pathways. Elsevier Science, New York, pp.: 191–247.

    Google Scholar 

  • Junttila O., Nilsen A. J. 1980. Stimulation of Phalaris seed germination by respiratory inhibitors and oxidizing agents. Z. Pflanzenphysiol. 97: 429–435.

    CAS  Google Scholar 

  • Juszczuk I.M., Rychter A.M. 2003. Alternative oxidase in higher plants. Acta Bioch. Pol. 50: 1257–1271.

    CAS  Google Scholar 

  • Kacperska A. 2004. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol. Plant. 122: 159–168.

    Article  CAS  Google Scholar 

  • Kakes P., Hakvoort H. 1992. Is the rhodanese activity in plants? Phytochemistry 31: 1501–1505

    Article  CAS  Google Scholar 

  • Kępczyński J., Kępczyńska E. 1997. Ethylene in seed dormancy and germination. Physiol. Plant. 101: 720–726.

    Article  Google Scholar 

  • Koornneef M., Karssen C.M. 1994. Seed dormancy and germination. In: Somerville C.R., Meyerowitz E.M. eds. Arabidopsis 1994. Cold Spring Harbour laboratory Press, New York, pp.: 313–334.

    Google Scholar 

  • Larsen M., Trapp S., Pirandello A. 2004. Removal of cyanide by woody plants. Chemosphere 54: 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Latha M.V., Borowitz J.L., Yim G.K.W., Kanthasamy A., Isom G.E. 1994. Plasma membrane hyperpolarization by cyanide in chromaffin cells: role of potassium channels. Arch. Toxicol. 68: 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Lewak St., Bogatek R., Żarska-Maciejewska B. 2000. Sugar metabolism in apple embryos. In: Viemont J.-D. and Grabbe J. (eds.), Dormancy in Plants. CAB International, pp.: 47–55.

  • Li. L., Prabhakaran K., Shou Y., Borowitz J.L., Isom G.E. 2002. Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells. Toxicol. Appl. Pharm. 185: 55–63.

    Article  CAS  Google Scholar 

  • Liang W.-S., Li D.-B. 2001. The two β-cyanoalanine synthase isozymes of tobacco showed different antioxidative abilities. Plant Sci. 161: 1171–1177.

    Article  CAS  Google Scholar 

  • Liang W.-S. 2003. Drought stress increases both cyanogenesis and â-cyanoalanine synthase activity in tobacco. Plant Sci. 165:1109–1115.

    Article  CAS  Google Scholar 

  • Maruyama A., Yoshiyama M., Adachi Y., Tani A., Hasegawa R., Esashi Y. 1996. Promotion of cocklebur seed germination by allyl, sulfur and cyanogenic compounds. Plant Cell Physiol. 37: 1054–1058.

    CAS  Google Scholar 

  • Maruyama A., Kazuki S., Ishizawa K. 2001. β-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol. Biol. 46: 749–760.

    Article  PubMed  CAS  Google Scholar 

  • Mathangi D.C., Namasivayam A. 2004. Calcium ions: its role in cyanide neurotoxicity. Food Chem. Toxicol. 42: 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Matilla A.J. 2000. Ethylene in seed formation and germination. Seed Sci. Res. 10: 111–126.

    CAS  Google Scholar 

  • May M.J., Vernoux T., Leaver C., Van Montagu M., Inze D. 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49: 649–667.

    Article  CAS  Google Scholar 

  • Meyer T., Burow M., Bauer M., Papenbrock J. 2003. Arabidopsis sulfurtransferases: investigation of their function during senescence and in cyanide detoxification. Planta 217: 1–10.

    PubMed  CAS  Google Scholar 

  • Meyers D., Ahmad S. 1991. Link between L-3 cyanoalanine synthase activity and differential cyanide sensitivity of insects. Biochim. Biophys. Acta 1075: 195–197

    PubMed  CAS  Google Scholar 

  • Miller J.M., Conn E.E. 1980. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 65: 1199–1202.

    Article  PubMed  CAS  Google Scholar 

  • Moller B.L., Seigler D.S. 1999. Biosynthesis of cyanogenic glycosides, cyanolipids, and related compounds. In: Plant Amino Acids. B.K. Singh B.K. (ed.), Marcel Dekker, Inc. New York., pp.: 563–609.

    Google Scholar 

  • Moore A. L., Albury M.S., Crichton P.G., Affourtit Ch. 2002. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci. 7: 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y., Matsushima H. 1983. Appearance and disappearance of cyanide-resistrant respiration in Vigna mungo cotyledons during and following germination of the axis. Plant Physiol. 73: 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Munnink T., Meijer H.J.G. 2001. Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS Lett. 498: 172–178.

    Article  Google Scholar 

  • Nahrstedt A. 1985. Cyanogenic compounds as protecting agents for organisms. Plant Sys. Evol. 150: 35–47.

    Article  CAS  Google Scholar 

  • Nahrstedt A. 1993. Cyanogenesis and foodplants. In: Proc. of Phytochem. Soc. in Europe, ed. by T.A. van Beek., H. Breteler, Clarendon Press, Oxford: 107–129.

    Google Scholar 

  • Neill S., Desikan R., Clarke A., Hurst R.D., Hancoock J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Botany 53: 1237–1247.

    Article  CAS  Google Scholar 

  • Neill S.J. Desikan R., Hancock J.T. 2003. Nitric oxide signalling in plants. New Phytol. 159: 11–35.

    Article  CAS  Google Scholar 

  • Niedźwiedź-Siegień I. 1998. Cyanogenic glucosides in Linum usitatissimum. Phytochemistry 49: 59–63.

    Article  Google Scholar 

  • Niedźwiedź-Siegień I., Gierasimiuk A. 2001. Environmental factors affecting the cyanogenic potential of flax seedlings. Acta Physiol. Plant. 23: 383–380.

    Article  Google Scholar 

  • Nkang A. 2001. Effect of cyanide pre-treatment on activities of polyphenoloxidase and peroxidase in seeds of Guilfoylia monostylis. Seed Sci. Technol. 29: 557–565.

    Google Scholar 

  • Nun N.B., Plakhine D., Joel D.M., Mayer A.M. 2003. Changes in the activity of the alternative oxidase in Orobanche seeds g conditioning and their possible physiological function. Phytochemistry 64: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Ordog S.H., Higgins V.J., Vanlerberghe G.C. 2002. Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol. 129: 1858–1865.

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K., Brosche M., Kangasjavri J. 2003. Reactive oxygen species and hormonal control of cell death. Trends in Plant Sci. 8: 335–342.

    Article  CAS  Google Scholar 

  • Peiser G.D., Wang T.-T., Hoffman N.E., Yang S.F., Liu H.-W., Walsh C.T. 1984. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc. Natl. Acad. Sci. USA 81: 3059–3063.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E. 1969. Seed dormancy and oxidation processes. Symp. Soc. Exp. Biol. 23: 161–192.

    PubMed  CAS  Google Scholar 

  • Saito K. 2000. Regulation of sulhate transport and synthesis of sulfur-containing amino acids. Curr. Opinion Plant Biol. 3: 188–195.

    CAS  Google Scholar 

  • Samuilov V.D., Lagunova E.M., Beshta O.E., Kitashov A.V. 2000. CN-induced degradation of nuclei in cells of pea leaves. Biochemistry (Moscow) 65: 696–702.

    CAS  Google Scholar 

  • Seigler D.S. 1991. Cyanide and cyanogenic glycosides. In; Herbivores: Their Interactions with Secondary Plant Metabolites. Rosenthal G. A. and Berenbaum M.R. (eds.) Academic Press, San Diego, pp.: 35–77.

    Google Scholar 

  • Selmar D. 1993. Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides. β-Glucosidases: Biochemistry and Molecular Biology, Am. Chem. Soc. Symp. Ser. 533, American Chemical Society, Washington, DC, pp.: 190–203.

    Google Scholar 

  • Selmar D., Lieberei R., Biehl B. 1988. Mobilization and utilization of cyanogenic glycosides. The linustatin pathway. Plant Physiol. 86: 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Shou Y., Gunasekar P.G., Borowitz J.L., Isom G.E. 2000. Cyanide-induced apoptosis involves oxidative-stress-activated NF-KB in cortical neurons. Toxicol. Appl. Pharmacol. 164: 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Siefert F., Kwiatkowski J., Sarkar S., Grossmann K. 1995. Changes in endogenous cyanide and 1-aminocyclopropane-1-carboxylic acid levels during the hypersensitive response of tobacco mosaic virus-infected tobacco leaves. Plant Growth Regul. 17: 109–113.

    Article  CAS  Google Scholar 

  • Siegień I. 1998. Cyanogenesis in plants. Postępy Biochem. (in Polish) 44: 325–332.

    PubMed  Google Scholar 

  • Siritunga D., Sayre R. 2004. Engineering cyanogen synthesis and turnover in cassava. Plant Mol. Biol. 56: 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Smith J. M., Arteca R.N. 2000. Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol. Plant. 109:180–187.

    Article  CAS  Google Scholar 

  • Smoleńska G., Lewak St. 1971. Gibberellins and the photosensitivity of isolated embryos from non stratified apple seeds. Planta 99: 144–153.

    Article  Google Scholar 

  • Solomonson L.P., Barber M.J. 1990. Assimilatory nitrate reductase: functional properties and regulation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 225–253.

    Article  CAS  Google Scholar 

  • Solomonson L.P., Spehar A.M. 1977. Model for regulation of nitrate assimilation. Nature 265: 373–375.

    Article  CAS  Google Scholar 

  • Stochmal A., Oleszek W. 1977. Model for regulation of nitrate assimilation. Nature 265: 373–375.

    Article  Google Scholar 

  • Stochmal A., Oleszek W. 1997. The changes of cyanogenic glucosides in white clover (Trifolium repens L.) during the growing season. J. Agric. Food Chem. 11: 4333–4336.

    Article  Google Scholar 

  • Tommasi F., Paciolla C., de Pinto M.C., De Gara L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J. Exp. Bot. 52: 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • Tretyn A. 2002. Regulacja procesów wzrostu i rozwoju przez czynniki środowiskowe. In: “Plant Physiology”, ed. by Kopcewicz J., Lewak St., PWN, Warsaw: 167–191, (in Polish).

    Google Scholar 

  • Tucker M.L., Laties G.G. 1984. Comparative effects of ethylene on the respiration polysome prevalence, and gene expression in carrot roots. Plant Physiol. 75: 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Vranova E., Inze D., Breusegem F.V. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  • Wagner A.M., Moore A.L. 1997. Structure and function of the plant alternative oxidase:its putative role in oxygen defence mechanisms. Bioscience Rep. 17: 319–333.

    Article  CAS  Google Scholar 

  • Wittstock U.and Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opinion in Plant Biol. 5: 1–8.

    Article  Google Scholar 

  • Wojtaszek P. 2000. Nitric oxide in plants. To NO or not to NO. Phytochemistry. 54: 1–4

    PubMed  CAS  Google Scholar 

  • Wojtaszek P. 1997. Oxidative burst: an early plant respone to pathogen infection. Biochem. J. 322: 681–692.

    PubMed  CAS  Google Scholar 

  • Wong Ch.E., Carso R.A.J., Carr J.P. 2002. Chemically induced virus resistance in Arabidopsis thaliana id independent on pathogenesis-related protein expression and the NPR1 gene. MPMI. 15: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Yip W.-K., Yang S.F. 1988. Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 88: 473–476.

    Article  PubMed  CAS  Google Scholar 

  • Zagórski S., Lewak St. 1985. Germination of lettuce seeds promoted by red light, gibberellin or cyanide is differently affected by far red illumination and temperature. Acta Physiol. Plant. 7: 65–70.

    Google Scholar 

  • Zagrobelny M., Bak S., Rasmussen V., Jorgensen B., Naumann C.M., Moller B.L. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65: 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Zottini M., Formentin E., Scattolin M., Carimi F., Lo Schiavo F., Terzi M. 2002. Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Let. 515: 75–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Siegień.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegień, I., Bogatek, R. Cyanide action in plants — from toxic to regulatory. Acta Physiol Plant 28, 483–497 (2006). https://doi.org/10.1007/BF02706632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706632

Key words

Navigation