Skip to main content
Log in

Compartmentation of cyanogenic glucosides and their degrading enzymes

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Whereas high activities of β-glucosidase occur in homogenates of leaves of Hevea brasiliensis Muell.-Arg., this enzyme, which is capable of splitting the cyanogenic monoglucoside linamarin (linamarase), is not present in intact protoplasts prepared from the corresponding leaves. Thus, in leaves of H. brasiliensis the entire linamarase is located in the apoplasmic space. By analyzing the vacuoles obtained from leaf protoplasts isolated from mesophyll and epidermal layers of H. brasiliensis leaves, it was shown that the cyanogenic glucoside linamarin is localized exclusively in the central vacuole. Analyses of apoplasmic fluids from leaves of six other cyanogenic species showed that significant linamarase activity is present in the apoplasm of all plants tested. In contrast, no activity of any diglucosidase capable of hydrolyzing the cyanogenic diglucoside linustatin (linustatinase) could be detected in these apoplasmic fluids. As described earlier, any translocation of cyanogenic glucosides involves the interaction of monoglucosidic and diglucosidic cyanogens with the corresponding glycosidases (Selmar, 1993a, Planta 191, 191–199). Based on this, the data on the compartmentation of cyanogenic glucosides and their degrading enzymes in Hevea are discussed with respect to the complex metabolism and the transport of cyanogenic glucosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamon, A., Jacoby, B. (1980) Assessment of cytoplasmatic contamination in isolated vacuole preparation. Plant Physiol. 65, 85–87

    Google Scholar 

  • Aldridge, W.N. (1944) A new method for the estimation of microquantities of cyanide and thiocyanide. Analyst. 69, 262–265

    Google Scholar 

  • Arnon, D.J. (1949) Copper enzymes in isolated chloroplasts. Phenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Bergmeyer, H.U. (1970) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Clegg, D.O., Conn, E.E., Janzen, D.H. (1979) Developmental fate of the cyanogenic glucoside linamarin in Costa Rica wild lima bean seeds. Nature 278, 343–344

    Google Scholar 

  • Conn, E.E. (1981) Biosynthesis of cyanogenic glycosides. In: Cyanide in biology, pp. 183–196, Vennesland, B., Conn, E.E., Knowles, C.J., Westley, J., Wissing, F., eds. Academic Press, London

    Google Scholar 

  • Conn, E.E. (1984) Compartmentation of secondary compounds. Annu. Proc. Phytochem. Soc. Europe 24, 1–28

    Google Scholar 

  • Czapek, F. (1921) Biochemie der Pflanzen. Fischer, Jena

    Google Scholar 

  • DeBruijn, G.H. (1973) The cyanogenic character of cassava (Manihot esculenta). In: Chronic cassava toxicity, pp. 43–48, Nestel, B., MacIntyre, R., eds. International Development Research Centre, Ottawa, Canada

    Google Scholar 

  • Erickson, R.O. (1986) Symplastic growth and symplasmic transport. Plant Physiol. 82, 1153

    Google Scholar 

  • Frehner, M., Conn, E.E. (1987) The linamarin β-glucosidase in Costa Rica wild bean (Phaseolus lunatus L.) is apoplastic. Plant Physiol. 84, 1296–1300

    Google Scholar 

  • Frehner, M., Keller, F., Wiemken, A. (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L.). J. Plant Physiol. 116, 197–208

    Google Scholar 

  • Fritsch, H., Grisebach, H. (1975) Biosynthesis of cyanidin in cell cultures of Happlopappus gracilis. Phytochemistry 14, 2437–2441

    Google Scholar 

  • Grob, K., Matile, P. (1979) Vacuolar localization of glucosinolates in horseradish root cells. Plant Sci. Lett. 14, 327–335

    Google Scholar 

  • Grützmacher, H., Biehl, B., Czygan, F.-Ch., Selmar, D. (1990) Variations in HCN-potential in Dimorphotheca sinuata. Planta Med. 56, 610–611

    Google Scholar 

  • Hahlbrock, K., Conn, E.E. (1970) The biosynthesis of cyanogenic glycosides in higher plants: Purification and properties of a uridine diphosphate-glucose-ketone cyanohydrin β-glucosyltransferase from Linum usitatissimum L. J. Biol. Chem. 245, 917–922

    Google Scholar 

  • Halkier, B.A., Scheller, H.V., Møller, B.L. (1988) Cyanogenic glucosides: the biosynthetic pathway and the enzyme system involved. In: Cyanide compounds in biology, pp. 49–61, Everett, D., Harnett, S., eds. Wiley & Sons, Chichester

    Google Scholar 

  • Heyn, A.N.J. (1969) Glucanase activity in coleoptiles of Avena. Arch. Biochem. Biophys. 132, 442–449

    Google Scholar 

  • Hrazdina, G., Wagner, G.J. (1985) Compartmentation of plant phenolic compounds; sites of synthesis and accumulation. In: Ann. Proc. Phytochem. Soc. Europe, vol. 25: The biochemistry of plant phenolics, pp. 119–133, Sumere, C.F., Lea, P.J., eds. Oxford University Press, Oxford

    Google Scholar 

  • Kakes, P. (1985) Linamarase and other β-glucosidases are present in the cell walls of Trifolium repens leaves. Planta 166, 156–160

    Google Scholar 

  • Kojima, M., Poulton, J.E., Thayer, S.S., Conn, E.E. (1979) Tissue distribution of dhurrin and enzymes involved in its metabolism in leaves of Sorghum bicolor. Plant Physiol. 94, 401–405

    Google Scholar 

  • Kuroki, G., Lizotte, P.A., Poulton, J.E. (1984) Catabolism of (R)-amygdalin and (R)-vicianin by partially purified β-glucosidases from Prunus serotina Ehrh. and Davallia trichomanoides. Z. Naturforsch. 39c, 232–239

    Google Scholar 

  • Kurzhals, Ch., Grützmacher, H., Selmar, D., Biehl, B. (1989) Linustatin, the linamarin-glucoside protected against cleavage by apoplastic linamarase. Planta Med. 55, 673

    Google Scholar 

  • Leegood, R.C., Walker, D.A. (1983) Chloroplasts. In: Isolation of membranes and organelles from plant cells, pp. 185–210, Hall, J.L., Moore, A.L., eds. Academic Press, London

    Google Scholar 

  • Lieberei, R. (1984) Cyanogenese und Resistenz. Habilitationsschrift, Technische Universität Braunschweig

  • Marcinowski, S., Grisebach, H. (1978) Enzymology of lignification. Cell wall bound β-glucosidase for coniferin from spruce (Piceaabies). Eur. J. Biochem. 87, 37–44

    Google Scholar 

  • Marcinowski, S., Falk, H., Hammer, D.K., Hoyer, B., Grisebach, H. (1979) Appearance and localization of β-glucosidase hydrolyzing coniferin in spruce (Picea abies). Planta 144, 161–167

    Google Scholar 

  • Matile, Ph. (1975) The lytic compartment of plant cells. (Cell biology monographs, vol. 1). Springer, Wien New Work

    Google Scholar 

  • Mkpong, O.E., Yan, H., Chism, G., Sayre, R.T. (1990) Purification, characterization and localization of linamarase in cassava. Plant Physiol. 93, 176–181

    Google Scholar 

  • Møller, B.L., Conn, E.E. (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor. J. Biol. Chem. 255, 3049–3056

    Google Scholar 

  • Münch, E. (1930) Die Stoffbewegungen in der Pflanze. Fischer Verlag, Jena

    Google Scholar 

  • Noltman, E.A. (1964) Isolation of crystalline phosphoglucose-isomerase from rabbit muscle. J. Biol. Chem. 239, 1545–1550

    Google Scholar 

  • Oba, K., Canut, H., Boudet, A.M., Conn, E.E. (1981) Subcellular localization of 2-β-D-(glucosyloxy)-cinnamic acids and the related β-glucosidase in leaves of Melilotus alba. Plant Physiol. 68, 1359–1363

    Google Scholar 

  • Poulton, J.E. (1990) Cyanogenesis in plants. Plant Physiol. 94, 401–405

    Google Scholar 

  • Quail, P.H. (1979) Plant cell fractionation. Annu. Rev. Plant Physiol. 30, 425–484

    Google Scholar 

  • Reay, P.F., Conn, E.E. (1974) The purification and properties of a uridine diphosphate glucose: aldehyde cyanohydrin β-glucosyltransferase from Sorghum seedlings. J. Biol. Chem. 249, 5826–5830

    Google Scholar 

  • Robinson, M.E. (1930) Cyanogenesis in plants. Biol. Rev. 5, 126–141

    Google Scholar 

  • Saunders, J.A. (1979) Investigation of vacuoles isolated from tobacco. Plant Physiol. 64, 74–78

    Google Scholar 

  • Saunders, J.A., Conn, E.E. (1978) The presence of the cyanogenic glucoside dhurrin in isolated vacuoles from Sorghum. Plant Physiol. 61, 154–157

    Google Scholar 

  • Selmar, D. (1989) Cyanogenic glucosides — constituents of xylem and phloem sap? Plant Physiol. (Suppl.) 86, 153

    Google Scholar 

  • Selmar, D. (1993a) Transport of cyanogenic glucosides: Linustatin uptake by Hevea cotyledons. Planta 191, 191–199

    Google Scholar 

  • Selmar, D. (1993b) Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides. In: The biochemistry and molecular biology of β-glucosidases, pp. 191–204, A.Esen, ed., ACS, Washington

    Google Scholar 

  • Selmar, D., Lieberei, R., Biehl, B., Voigt, J. (1987a) Linamarase in Hevea — a nonspecific β-glucosidase. Plant Physiol. 83, 557–563

    Google Scholar 

  • Selmar, D., Lieberei, R., Biehl, B., Nahrstedt, A., Schmidtmann, V., Wray, V. (1987b) Occurrence of linustatin in Hevea brasiliensis. Phytochemistry 26, 2400–2401

    Google Scholar 

  • Selmar, D., Carvalho, F.J.P., Conn, E.E. (1987c) A colorimetric assay for α-hydroxynitrile lyase. Analyt. Biochem. 166, 208–211

    Google Scholar 

  • Selmar, D., Lieberei, R., Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711–716

    Google Scholar 

  • Selmar, D., Lieberei, R., Biehl, B., Conn, E.E. (1989) α-Hydroxynitrile lyase in Hevea brasiliensis and its significance for rapid cyanogenesis. Plant Physiol. 75, 97–101

    Google Scholar 

  • Selmar, D., Grocholewski, S., Seigler, D.S. (1990) Cyanogenic lipids: Utilization during seedling development of Ungnadia speciosa. Plant Physiol. 93, 631–636

    Google Scholar 

  • Swain, E., Li, C.P., Poulton, J.E. (1992) Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds. Physiol. Plant. 100, 291–300

    Google Scholar 

  • Thayer, S.S., Conn, E.E. (1981) Subcellular localization of dhurrin β-glucosidase and hydroxynitrile lyase in the mesophyll cells of Sorghum leaf blades. Plant Physiol. 67, 617–622

    Google Scholar 

  • Wagner, G.J. (1979) Content and vacuole/extravacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiol. 64, 88–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Prof. Dr. E. E. Conn (Department of Biochemistry and Biophysics, University of California, Davis, Cal., USA) for critical reading of the manuscript. We thank the Deutsche Forschungsgemeinschaft, which supported this work financially.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruhnert, C., Biehl, B. & Selmar, D. Compartmentation of cyanogenic glucosides and their degrading enzymes. Planta 195, 36–42 (1994). https://doi.org/10.1007/BF00206289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206289

Key words

Navigation