Skip to main content
Log in

Cyanogenic compounds as protecting agents for organisms

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Biochemical and physiological arguments and several plant-predator relationships described in the literature are presented in which cyanogenesis plays a role as a protecting process. HCN arising from the cleavage of cyanogenics is regarded to be the most important agent, but also the cyanogenic itself, carbonyls and β-cyanoalanine, which are products of degradation processes of cyanogenics, may possess protecting properties. Some examples show that these substances are also utilized by arthropods. This presents the opportunity to look at a coevolutionary system combined of snails, plants, moths and moth-parasites in which cyanogenesis obviously plays an interesting role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, R. J., 1977: A quantitative association between soil moisture content and the frequency of the cyanogenic form ofLotus corniculatus at Birsay, Orkney. — Heredity38, 397.

    Google Scholar 

  • Baumeister, R. G. H., Schievelbein, H., Zickgraf-Rüdel, G., 1975: Toxicological and clinical aspects of cyanide metabolism. — Arzneimittelforsch.25, 1056–1064.

    PubMed  Google Scholar 

  • Bernays, E. A., Chapman, R. F., Leather, E. M., McCaffery, A. R., 1977: The relationship ofZonocerus variegatus with cassava. — Bull. Ent. Res.67, 391–404.

    Google Scholar 

  • Braekman, J. D., Daloze, D., Pasteels, J. M., 1982: Cyanogenic and other glucosides in a Neo-Guinean bugLeptocoris isolata. — Biochem. Syst. Ecol.10, 355–364.

    Google Scholar 

  • Brattsten, L. B., Samuelian, J. H., Long, K. Y., Kincaid, S. A., Evans, C. K., 1983: Cyanide as a feeding stimulant for the southern army wormSpodoptera eridania. — Ecol. Entomology8, 125–132.

    Google Scholar 

  • Clegg, D. O., Conn, E. E., Janzen, D. A., 1979: Developmental fate of the cyanogenic glucoside linamarin in Costa Rica wild lima bean seeds. — Nature278, 343–344.

    Google Scholar 

  • Compton, S. G., Newsome, D., Jones, D. A., 1983: Selection for cyanogenesis in the leaves and petals ofLotus corniculatus L. at high altitudes. — Oecologica (Berlin)60, 353–358.

    Google Scholar 

  • Conn, E. E., 1983: Compartmentation of Secondary Compounds. Plenary Lecture I, Intern. Symp. on Membranes and Compartmentation in Regulation of Plant Function. Toulouse: Phytochem. Soc. Europe.

    Google Scholar 

  • Cooper-Driver, G. A., Swain, T., 1976: Cyanogenic polymorphism in bracken in relation to herbivore predation. — Nature260, 604.

    PubMed  Google Scholar 

  • Davis, R. H., Nahrstedt, A., 1985: Cyanogenesis in insects. — InKerkut, G. A., Gilbert, L. I., (Eds.): Comprehensive Insect Physiology, Biochemistry and Pharmacology11, 635. — Oxford: Pergamon Press.

    Google Scholar 

  • Dritschilo, W., Krummel, J., Nafus, D., Pimentel, O., 1979: Herbivorous insects colonising cyanogenic and acyanogenicTrifolium repens. — Heredity42, 49–56.

    Google Scholar 

  • Duffey, S. S., 1981: Cyanide and Arthropods. — InVennesland, B., et al. (Eds.): Cyanide in Biology, pp. 385. — London: Academic Press.

    Google Scholar 

  • Franzl, S., Naumann, C. M., 1983: Morphologie und Histologie der Wehrsekretbehälter erwachsener Raupen vonZygaena trifolii. — Ent. Abh. Mus. Tierk. Dresden48, 1–12.

    Google Scholar 

  • Hösel, W., 1981: The enzymic hydrolysis of cyanogenic glucosides. — InVennesland, B. & al., (Eds.): Cyanide in Biology, pp. 217. — London: Academic Press.

    Google Scholar 

  • —, 1982: The aglycone specificity of plant β-glycosidases. — Trends Biochem. Sci.7, 219.

    Google Scholar 

  • —, 1975: Spezifische Glucosidasen für das Cyanglucosid Triglochinin. — Hoppe-Seyler's Z. Physiol. Chem.356, 1265.

    PubMed  Google Scholar 

  • Hughes, M. A., Dunn, M. A., 1982: Biochemical characterization of theLi locus, which controls the activity of the cyanogenic β-glucosidase inTrifolium repens. — Plant Mol. Biol.1, 169–181.

    Google Scholar 

  • Janzen, D. H., Juster, H. B., Bell, E. A., 1977: Toxicity of secondary compounds of the seed-eating larvae of the Bruchid beetleCallosobruchus maculatus. — Phytochemistry16, 223–227.

    Google Scholar 

  • Jones, D. A., 1962: Selective eating of the acyanogenic form of the plantLotus corniculatus by various animals. — Nature193, 1109–1110.

    Google Scholar 

  • —, 1966: On the polymorphism of cyanogenesis inLotus corniculatus. I. Selection by animals. — Can. J. Genet. Cytol.8, 556–567.

    Google Scholar 

  • —, 1962: Release of HCN from crushed tissues of all stages in the life-cycle of species of theZygaeninae. — Nature193, 52–53.

    PubMed  Google Scholar 

  • Kaethler, F., Pree, D. J., Bown, A. W., 1982: HCN: a feeding deterrent in peach to the oblique-banded leafroller. — Ann. Ent. Soc. America75, 568–573.

    Google Scholar 

  • Keymer, R., Ellis, W. M., 1978: Experimental studies on plants ofLotus corniculatus from Anglesey polymorphic for cyanogenesis. — Heredity40, 189–206.

    Google Scholar 

  • Kuroki, G., Lizotte, P. A., Poulton, J. E., 1984: Catabolism of R-amygdalin and R-vicianin by partially purified β-glucosidases fromPrunus serotina andDavallia trichomanes. — Z. Naturforsch.39 c, 232–239.

    Google Scholar 

  • Lewin, R., 1982: Can genes jump between eukaryotic species? — Science217, 42–43.

    PubMed  Google Scholar 

  • Lieberei, R., 1984: Cyanogenese und Resistenz. — Habilitationsschrift. Techn. Univ. Braunschweig.

  • —, 1985: Metabolization of cyanogenic glucosides inHevea brasiliensis. — Plant Syst. Evol.150, 49–63.

    Google Scholar 

  • Mikolajczak, K. L., Madrigal, R. V., Smith, C. R., jun., Reed, D. K., 1984: Insecticidal effects of cyanolipids on three species of stored product insects. — J. Econ. Entomol.77, 1144–1148.

    Google Scholar 

  • Nahrstedt, A., 1982: Strukturelle Beziehungen zwischen pflanzlichen und tierischen Sekundärstoffen. — Planta Med.44, 2–14.

    PubMed  Google Scholar 

  • Nayar, J. K., Fraenkel, G., 1963: The chemical basis of the host selection in the Mexican bean Beetle,Epilachna varivestis. — Ann. Ent. Soc. Am.56, 174–178.

    Google Scholar 

  • Poulton, J. E., 1983: Cyanogenic compounds in plants and their toxic effects. — InKeeler, R. F., Tu, T. A., (Eds.): Handbook of Natural Toxins1. — New York: Marcel Dekker Inc.

    Google Scholar 

  • Rehr, S. S., Feeny, P. P., Janzen, D. H., 1973: Chemical defence in Central American non-ant-acacias. — J. Anim. Ecol.42, 405–416.

    Google Scholar 

  • Reitnauer, P. G., 1972: Mandelsäurenitril-Glykoside in Krebsforschung und Krebstherapie. — Arzneimittelforsch.22, 1347–1361.

    PubMed  Google Scholar 

  • Robinson, M. E., 1930: Cyanogenesis in plants. — Biol. Rev.5, 126–141.

    Google Scholar 

  • Rosenthal, G. A., Bell, E. A., 1979: Naturally occurring, toxic nonprotein amino acids. — InRosenthal, G. A., Janzen, D. H., (Eds.): Herbivores. Their Interaction with Secondary Plant Metabolites, pp. 353–385. — New York: Academic Press.

    Google Scholar 

  • Ross, M. D., Jones, W. T., 1983: A genetic polymorphism for tannin production inLotus corniculatus and its relationship to cyanide polymorphism. — Theor. Appl. Genet.64, 263–268.

    Google Scholar 

  • Schlesinger, H. M., Applebaum, S. W., Birk, Y., 1976: Effect of β-cyanoalanine on the water balance ofLocusta migratoria. — J. Insect Physiol.22, 1421–1425.

    Google Scholar 

  • Seigler, D. S., 1977: Primary roles for secondary compounds. Biochem. Syst. Ecol.5, 195–199.

    Google Scholar 

  • —, 1981: Cyanogenic glucosides and lipids: Structural types and distribution. — InVennesland, B. & al., (Eds.): Cyanide in Biology, pp. 133. — London: Academic Press.

    Google Scholar 

  • —, 1978: Acacipetalin from six species ofAcacia of Mexico and Texas. — Phytochemistry17, 445–446.

    Google Scholar 

  • Spencer, K. C., Seigler, D. S., Nahrstedt, A.: Linamarin, lotaustralin, linustatin and neolinustatin fromPassiflora species. — In preparation.

  • Stahl, E., 1888: Pflanzen und Schnecken. Biologische Studien über die Schutzwirkung der Pflanzen gegen Schneckenfraß — Jena Z. Med. Naturwiss.22, 557–648.

    Google Scholar 

  • Thayer, S. S., Conn, E. E., 1981: Subcellular localization of dhurrin β-glucosidase and hydroxynitrilase in the mesophyll cells ofSorghum leaf blades. — Plant Physiol.67, 617.

    Google Scholar 

  • Tuttas, R., Nahrstedt, A., 1977: Bedeutung der Cyanglykoside für den Benzylalkoholgehalt in Kirschbränden. — Z. Lebensm. Unters.-Forschg.163, 257.

    Google Scholar 

  • Weiss, M., 1960: HCN in Apfelembryonen. — Flora149, 386.

    Google Scholar 

  • Witthohn, K., Naumann, C. M., 1984: Die Verbreitung des β-Cyanoalanin bei cyanogenenLepidoptera. Z. Naturforsch.39 c, 837–840.

    Google Scholar 

  • Woodhead, S., 1983: Surface chemistry ofSorghum bicolor and its importance in feeding byLocusta migratoria. — Physiol. Ent.8, 345–352.

    Google Scholar 

  • —, 1978: The chemical basis of resistance ofSorghum bicolor to attack byLocusta migratoria. — Entomol. Experim. Applic.24, 123–144.

    Google Scholar 

Some Elect Reviewing Literature Not Cited in the Text

  • Conn, E. E., 1979: Cyanide and cyanogenic glycosides. — InRosenthal, G. A., Janzen, D. H., (Eds.): Herbivores. Their Interaction with Secondary Plant Metabolites, pp. 387–412. — New York: Academic Press.

    Google Scholar 

  • Janzen, D. H., 1981: Evolutionary physiology of personal defence. — InTownsend, C. R., Calow, P., (Eds.): Physiological Ecology, pp. 145. — Oxford: Blackwell Sci. Publ.

    Google Scholar 

  • Jones, D. A., 1972: Cyanogenic glycosides and their function. — InHarborne, J. B., (Ed.): Phytochemical Ecology, pp. 103. — London: Academic Press.

    Google Scholar 

  • —, 1979: Chemical defence: Primary or secondary function? — Amer. Nat.113, 445–451.

    Google Scholar 

  • —, 1981: Cyanide and coevolution. — InVennesland, B. & al., (Eds.): Cyanide in Biology, pp. 509. — London: Academic Press.

    Google Scholar 

  • Swain, T., 1977: Secondary compounds as protective agents. — Ann. Rev. Plant. Physiol.28, 479–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Lecture presented during the Tagung der Deutschen Botanischen Gesellschaft, Vienna, September 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahrstedt, A. Cyanogenic compounds as protecting agents for organisms. Pl Syst Evol 150, 35–47 (1985). https://doi.org/10.1007/BF00985566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985566

Key words

Navigation