Skip to main content
Log in

Prediction of precision from signal and noise measurement in liquid chromatography: Limit of detection

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A method to determine the limit of detection (LOD) in high performance liquid chromatography (HPLC) is described. The power spectral density of instrumental baseline variation is fitted by the simplex least squares methods with a mixed random process of white noise and Markov process as a model. The white noise is characterized by standard deviation (SD),\(\tilde w\); the Markov process by the SD,\(\tilde m\), and auto-correlation degree, ρ. All required parameters for calculating the LOD signal are obtained by experiment without repeat measurements. No arbitrary constants are needed. The LOD signal is uniquely determined and is characterized by 33.3 % relative standard deviation (RSD) of analyte measurements and 0.13 % of the error of the first type. This signal also specifies that the signal-to-noise ratio =3, using the definition of noise originating from the white noise and Markov process. The theoretical conclusion is verified by the Monte Carlo simulation using real baseline and peaks. The LOD concentrations for naphthalene, acenaphthene, pyrene and perylene are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hayashi, R. Matsuda, Anal. Chem.66, 2874 (1994).

    Article  CAS  Google Scholar 

  2. P. W. J. M. Boumans, Anal. Chem.66, 459A (1994).

  3. G. L. Long, J. D. Winefordner, Anal. Chem.55, 712A (1983).

  4. L. H. Keith, W. Crummett, J. Deegan, Jr.,R. A. Libby, J. K. Taylor, G. Wentler, Anal. Chem.55, 2210 (1983).

    Article  CAS  Google Scholar 

  5. D. Lambert, B. Peterson, I. Terpenning, Journal of the American Statistical Association86, 266 (1991).

    Article  Google Scholar 

  6. Office of Health Studies. Chemicals in the environment, 1993.

  7. L. A. Currie, Pure Appl. Chem.64, 455 (1992).

    Article  CAS  Google Scholar 

  8. L. S. Ettre, Pure Appl. Chem.65, 819 (1993).

    Article  CAS  Google Scholar 

  9. L. A. Currie, G. Svehla, Pure Appl. Chem.66, 595 (1994).

    Article  CAS  Google Scholar 

  10. L. A. Currie, IUPAC project 18/83, Recommendation for nomenclature in evaluation of analytical methods, draft 1991,

  11. R. Ferrús, M. R. Egea, Anal. Chim. Acta287, 119 (1994).

    Article  Google Scholar 

  12. W. J. Taraszewski, D. T. Haworth, B. D. Pollard, Anal. Chim. Acta157, 73 (1984).

    Article  CAS  Google Scholar 

  13. J. P. Foley, J. G. Dorsey, Chromatographia18, 503 (1984).

    Article  CAS  Google Scholar 

  14. R. Kaiser, Chromatographia4, 123 (1971).

    Article  CAS  Google Scholar 

  15. R. Kaiser, Chromatographia4, 215 (1971).

    Article  CAS  Google Scholar 

  16. R. E. Synovec, E. S. Yeung, Anal. Chem.57, 2162 (1985).

    Article  CAS  Google Scholar 

  17. H. C. Smit, H. L. Walg, Chromatographia8, 311 (1975).

    Article  CAS  Google Scholar 

  18. C. N. Renn, R. E. Synovec, Anal. Chem.60, 1829 (1933).

    Article  Google Scholar 

  19. J. F. K. Huber, J. A. R. J. Hulsman, C. A. M. Meijers, J. Chromatogr.62, 79 (1971).

    Article  CAS  Google Scholar 

  20. E. H. Piepmeier, Anal. Chem.48, 1296 (1976).

    Article  CAS  Google Scholar 

  21. Y. Hayashi, R. Matsuda, Chromatographia, accepted for publication.

  22. M. Hino, Spectral Analysis (Supekutoru Kaiseki), 8th ed.; Tokyo: Asakura Shoten, 1982.

    Google Scholar 

  23. Y. Hayashi, R. Matsuda, Anal. Sci.10, 553 (1994).

    Article  CAS  Google Scholar 

  24. H. Barth, E. Dallmeier, G. Courtois, H. E. Keller, B. L. Karger, J. Chromatogr.83, 289 (1973).

    Article  CAS  Google Scholar 

  25. A. W. Westerberg, Anal. Chem.41, 1770 (1969).

    Article  CAS  Google Scholar 

  26. L. R. Snyder, Chrom. Sci.10, 200 (1972).

    Article  CAS  Google Scholar 

  27. J. P. Foley, J. Chromatogr.384, 301 (1987).

    Article  CAS  Google Scholar 

  28. A. N. Papas, M. F. Delaney, Anal. Chem.59, 54A (1987).

  29. N. Dyson, Chromatographic integration methods, Cambridge: Royal Society of Chemistry, 1990.

    Google Scholar 

  30. E. Grushka, I. Zamir, Chemical Analysis, 1989, Chapter 13.

  31. S. R. Bakalyar, R. A. Henry, J. Chromatogr.126, 327 (1976).

    Article  CAS  Google Scholar 

  32. R. P. W. Scott, C. E. Reese, J. Chromatogr.138, 283 (1977).

    Article  CAS  Google Scholar 

  33. I. Halász, P. Vogtel, J. Chromatogr.142, 241 (1977).

    Article  Google Scholar 

  34. L. R. Snyder, S. van der Wal, Anal. Chem.53, 877 (1981).

    Article  CAS  Google Scholar 

  35. Y. Hayashi, R. Matsuda, Chemom. Intell. Lab Syst.18, 1 (1993).

    Article  CAS  Google Scholar 

  36. Y. Hayashi, R. Matsuda, Advances in Chromatography, 1994, Chapter 7.

  37. H. Kaiser, Spectrochim. Acta3, 40 (1947).

    Article  CAS  Google Scholar 

  38. C. Th. J. Alkemade, W. Snelleman, G. D. Boutilier, B. D. Pollard, J. D. Winefordner, T. L. Chester, N. Omenetto, Spectrochim. Acta, Part B,33, 383 (1978).

    Article  Google Scholar 

  39. G. D. Boutilier, B. D. Pollard, J. D. Winefordner, T. L. Chester, N. Omenetto, Spectrochim. Acta, Part B,33, 401 (1978).

    Article  Google Scholar 

  40. C. Th. Alkemade, W. Snelleman, G. D. Boutilier, J. D. Winefordner, Spectrochim. Acta, Part B,35, 261 (1980).

    Article  Google Scholar 

  41. J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fizgerald, L. P. Hart, D. J. Johnson, F. W. Plankey, Spectrochim. Acta, Part B,31, 1 (1976).

    Article  Google Scholar 

  42. A. Bezegh, J. Janata, Anal. Chem.59, 494A (1987).

  43. T. Hirschfeld, Appl. Spectrosc.30, 67 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

First part of series cited as Ref. [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Matsuda, R. & Poe, R.B. Prediction of precision from signal and noise measurement in liquid chromatography: Limit of detection. Chromatographia 41, 66–74 (1995). https://doi.org/10.1007/BF02688002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688002

Key Words

Navigation