Skip to main content
Log in

Using additional standards for increasing the accuracy of quantitative chromatographic analysis

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Uncontrolled partial losses at the step of sample injection into a gas chromatographic column increase errors of determination by the external standard, absolute calibration, and standard addition methods. Modified method is proposed for quantitative analysis; it includes the introduction of additional standards into test samples and calculations by the ratio between the areas of chromatographic peaks and peaks of standards rather than the absolute areas of chromatographic peaks. The calculation equations are presented for modified methods of quantitative analysis using additional standards, including those for estimating random errors of determination. The relative standard deviations of peak areas were shown to be 6–38-fold lower than the analogous statistical characteristics of absolute areas. This ensures a high accuracy of quantitative determinations even under the conditions of low reproducibility of sample dosing. Solvents contained in the analyzed samples can be used as additional standards. This version can be recommended as a routine method of data representation and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novak, I., Quantitative Analysis by Gas Chromatography, New York Marcel Dekker, 1975.

    Google Scholar 

  2. Handbuch der Gaschromatographie, Leibnitz, E. and Struppe, H.G., Eds., Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G., vol. 1, 1984, 3rd ed.

  3. Sparkman, O.D., Penton, Z., and Kitson, F., Gas Chromatography and Mass Spectrometry, New York Academic, 2011.

    Google Scholar 

  4. Zenkevich, I.G. and Klimova, I.O., J. Anal. Chem., 2006, vol. 61, no. 10, p. 967.

    Article  CAS  Google Scholar 

  5. Marinichev, A.N., Turbovich, M.L., and Zenkevich, I.G., Fiziko-khimicheskie raschety na mikro-EVM. Spravochnik (Physicochemical Calculations by Microcomputer: Handbook), Leningrad Khimiya, 1990.

    Google Scholar 

  6. Linnik, Yu.V., Metod naimen’shikh kvadratov i osnovy teorii obrabotki nablyudenii (Least Squares Method and Fundamentals of the Theory of Processing of Observations), Moscow Gos. Izd. Fiz.-Mat. Liter., 1958.

    Google Scholar 

  7. Yagi, M., Izawa, G., Omori, T., Masumoto, K., and Yoshihara, K., J. Radioanal. Nucl. Chem., 1987, vol. 116, no. 1, p. 213.

    Article  CAS  Google Scholar 

  8. Apraksin, V.F., Kolichestvennyi gazokhromatograficheskii analiz. Metodicheskie ukazaniya (Quantitative Gas Chromatographic Analysis: Guidelines), St. Petersburg, 1999.

  9. Zenkevich, I.G. and Prokof’ev, D.V., Analitika Kontrol’, 2015, vol. 19, no. 4, p. 302.

    Google Scholar 

  10. Cherepitsa, S.V., Bychkov, S.M., Kovalenko, A.N., Mazanik, A.L., Selemina, N.M., and Seredinskaya, O.B., J. Anal. Chem., 2003, vol. 58, no. 3, p. 368.

    Article  CAS  Google Scholar 

  11. Cherepitsa, S.V., Bychkov, S.M., Gatsikha, S.V., Kovalenko, A.N., Mazanik, A.L., and Selemina, N.M., Partnery Konkurenty. Laboratorium, 2004, no. 8, p. 35.

    Google Scholar 

  12. Charapitsa, S.V., Kavalenka, A.N., Kulevich, N.V., Makoed, N.M., Mazanik, A.L., Sytova, S.N., Zayats, N.I., and Kotov, Yu.N., J. Agric. Food Chem., 2013, vol. 61, p. 2950.

    Article  CAS  Google Scholar 

  13. Cherepitsa, S., Zadreiko, Yu., Kulevich, N., and Sytova, S., Stand. Kach., 2014, no. 5, p. 40.

    Google Scholar 

  14. Cherepitsa, S.V., Sytova, S.N., Zakharov, M.A., Peschanskaya, V.A., Guguchkina, T.I., Markovskii, M.G., and Yakuba, Yu.F., Vinodel. Vinograd., 2015, no. 2, p. 12.

    Google Scholar 

  15. Lemeshko, B.Yu. and Lemeshko, S.B., Izmerit. Tekh., 2005, no. 6, p. 13.

    Google Scholar 

  16. Larin, S.L., Kuznetsov, V.V., and Romanenko, S.V., Analitika Kontrol’, 2014, vol. 18, no. 3, p. 310.

    Google Scholar 

  17. Zenkevich, I.G., Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 1998, no. 2, p. 84.

    Google Scholar 

  18. Zenkevich, I.G., Babushok, V.I., Linstrom, P.J., White, E., and Stein, S.E., J. Chromatogr. A, 2009, vol. 1216, p. 6651.

    Article  CAS  Google Scholar 

  19. Sturges, H., J. Am. Stat. Assoc., 1926, vol. 21, p. 65.

    Article  Google Scholar 

  20. The NIST 14 Mass Spectral Library (NIST14/2014/EPA/NIH). Software/Data Version (NIST14); NIST Standard Reference Database no. 69, 2014. National Institute of Standards and Technology, Gaithersburg, MD20899. http://webbook.nist.govhttp:// webbook.nist.gov. Cited April, 2016.

  21. Zenkevich, I.G. and Pavlovskii, A.A., J. Anal. Chem., 2015, vol. 70, no. 9, p. 1140.

    Article  Google Scholar 

  22. Zenkevich, I.G. and Pavlovskii, A.A., J. Sep. Sci., 2015, vol. 38, p. 2848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zenkevich.

Additional information

Original Russian Text © I.G. Zenkevich, D.V. Prokof’ev, 2017, published in Zhurnal Analiticheskoi Khimii, 2017, Vol. 72, No. 5, pp. 437–447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, I.G., Prokof’ev, D.V. Using additional standards for increasing the accuracy of quantitative chromatographic analysis. J Anal Chem 72, 510–519 (2017). https://doi.org/10.1134/S1061934817050136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934817050136

Keywords

Navigation