Skip to main content
Log in

Thin-layer liquid phase epitaxy of InGaPAs heterostructures in short intervals (< 100 ms): Non-diffusion-limited crystal growth

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Data are presented showing that two different mechanisms control the LPE growth of InGaPAs in the step-cooled technique. An automated growth apparatus, which allows an accurate and reproducible selection of growth times as short as ~9ms, is used to study the thickness and the growth rate of InGaPAs layers as a function of growth time for times ranging from ~9ms to ~20s. For long intervals the measured InGaPAs epilayer thickness is shown to vary as the square root of the growth time, as expected for the case of diffusion-limited growth. When the growth period is reduced to < 200ms , the quaternary layer thickness is greater than the diffusion-controlled value and, in addition, is practically independent of the growth time. Auger depth profile data on InGaPAs layers grown from ~ 9ms to ~ 120ms are presented showing that layers are uniform in composition. Photoluminescence data on InGaPAs layers grown under non-diffusion limited conditions are shown to be different in composition than the relatively thick layers grown under diffusion-limited conditions, at longer times, from melts with the same liquidus compositions. Data are presented indicating the existence of both of these distinct compositions in a single ~ 800 Å InGaPAs layer grown in ~ls. It is shown that thick InGaPAs layers of uniform composition can be grown, by the step-cooled LPE process, by stacking a number of thin layers grown in short intervals. Data are presented indicating that thin-layer stacks can be used to improve the performance characteristics of heterostructure lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Lifshits and A.M. Kosevitch, Dokl. Akad. Nauk SSSR91, 795 (1953); Izv. Akad. Nauk SSSR, Ser. Fiz. 19_, 395 (1955).

    Google Scholar 

  2. R. Dingle,Festkorperprobleme XV, Advances in Solid State Physics, Ed. H. Queisser, (Pergamon, New York, 1975), pp. 21–48.

    Google Scholar 

  3. L. Esaki and L.L. Chang,CRC Critical Reviews in Solid State Science, Vol. 6, Eds. D.E. Schuele and R.W. Hoffman, (CRC Press, Cleveland 1976), pp. 195–208.

    Google Scholar 

  4. N. Hlonyak, Jr., R.M. Kolbas, R. D. Dupuis, and P.D. Dapkus, J. Quantum Electron.QE-16, 170 (1980).

    Article  Google Scholar 

  5. R. Dingle, H.L. Stornier, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett.33, 667 (1978).

    Article  Google Scholar 

  6. K. Hess, H. Morkoc, H. Shichijo, and B.G. Streetman, Appl. Phys. Lett.35, 469 (1979).

    Article  CAS  Google Scholar 

  7. W.T. Tsang, C. Weisbuch, R.C. Miller, and R. Dingle, Appl. Phys. Lett.35, 673 (1979).

    Article  CAS  Google Scholar 

  8. R. Chin, N. Hlonyak jr, B.A. Vojak, K. Hess, R.D. Dupuis, and P.D. Dapkus, Appl. Phys. Lett.36, 19 (1980).

    Article  CAS  Google Scholar 

  9. K. Hess, B.A. Vojak, N. Holonyak, Jr., R. Chin, and P.D. Dapkus, Solid-State Electron.23, 585 (1980).

    Article  CAS  Google Scholar 

  10. E.A. Rezek, N. Holonyak, Jr., and B.K. Fuller, J. Appl. Phys._51, 2402 (1980).

    Article  Google Scholar 

  11. R. Chin, N. Hlonyak, Jr., G.E. Stillman, J.Y. Tang, and K. Hess, Electron. Lett.16 467 (1980).

    Article  CAS  Google Scholar 

  12. L. Esaki, L.L. Chang, W.E. Howard, and V.L. Rideout, Proc. 11th Int'l. Conf. on the Physics of Semiconductors (Polish Academy of Science, PWN—Polish Scientific Publishers, Warsaw, 1972), p. 431.

  13. E.A. Rezek, N. Hlonyak, Jr., B.A. Vojak, G.E. Stillman, J.A. Rossi, D.L. Keune, and J.D. Fairing, Appl. Phys. Lett.3l, 288 (1977).

    Article  Google Scholar 

  14. See for example G.E. Stillman, editor, IEEE J. Quantum ElectronicsQE-17, Feb. 1981.

  15. E.A. Rezek, R. Chin, N. Hlonyak, Jr., S.W. Kirchoefer, and R.M. Kolbas, J. Electronic Mater.9, 1 (1980).

    Article  Google Scholar 

  16. D.L. Rode, J. Crystal Growth20, 13 (1973).

    Article  CAS  Google Scholar 

  17. R.L. Moon, J. Crystal Growth27, 62 (1974).

    CAS  Google Scholar 

  18. M. Feng, L.W. Cook, M.M. Tashima, and G.E. Stillman, J. Electronic Mater.9, 241 (1980).

    Article  CAS  Google Scholar 

  19. B. de Cremoux, Proc. Int. Symp. on GaAs and Related Compounds, St. Louis, 1978, Inst. Phys. Conf. Series No. 45b (Inst. Phys., London, 1979), p. 52.

    Google Scholar 

  20. J.J. Hsieh, J. Crystal Growth27, 49 (1974).

    CAS  Google Scholar 

  21. L.W. Cook, M.M. Tashima, and G.E. Stillman, Appl. Phys. Lett.36 904 (1980).

    Article  CAS  Google Scholar 

  22. H. Nelson, RCA Review24, 603 (1963).

    Google Scholar 

  23. D. Pawlik, Siemens Forsch.-u. Entwickl.-Ber. Bd.7 219 (1978).

    CAS  Google Scholar 

  24. J.J. Hsieh, Proc. Int. Symp. on GaAs and Related Compounds, St. Louis, 1976, Inst. Phys. Conf. Series No. 33b (Inst. Phys., London, 1977), p. 74.

    Google Scholar 

  25. M. Feng, L.W. Cook, M.M. Tashima, T.H. Windhorn, and G.E. Stillman, Appl. Phys. Lett.34, 292 (1979).

    Article  CAS  Google Scholar 

  26. G.B. Stringfellow, J. Appl. Phys.43, 3455 (1972).

    Article  CAS  Google Scholar 

  27. J.J. Coleman, N. Holonyak, Jr., R. Chin, B.L Marshall, W.O. Groves, A.H. Herzog, and D.L. Keune, Proc. Int. Symp. on GaAs and Related Compounds, St. Louis, 1976, Inst. Phys. Conf. Series No. 33b (Inst. Phys., London, 1977), p. 339.

    Google Scholar 

  28. N. Holonyak, Jr., R. Chin, J.J. Coleman, D.L. Keune, and W.O. Groves, J. Appl. Phys. _48, 635 (1977).

    Article  CAS  Google Scholar 

  29. R.L. Moon, G.A. Antypas, and L.W. James, J. Electronic Mater.3, 635 (1974).

    Article  CAS  Google Scholar 

  30. E.A. Rezek, R. Chin, N. Holonyak, Jr., S.W. Kirchoefer, and R.M. Kolbas, Appl. Phys. Lett.35, 45 (1979).

    Article  CAS  Google Scholar 

  31. E.A. Rezek, H. Shichijo,B.A. Vojak, and N. Holonyak, Jr., Appl. Phys. Lett.31, 534 (1977).

    Article  CAS  Google Scholar 

  32. G.A. Antypas and L.Y.L. Shen, Proc. Int. Symp. on GaAs and Related Compounds, St. Louis, 1976, Inst. Phys. Conf. Series No. 33b (Inst. Phys., London, 1977), p. 96.

    Google Scholar 

  33. N. Hlonyak, Jr., R.M. Kolbas, W.D. Laidig, M. Altarelli, R.D. Dupuis, and P.D. Dapkus, Appl. Phys. Lett.34, 502 (1979).

    Article  Google Scholar 

  34. R.M. Kolbas, N. Hlonyak, Jr., B.A. Vojak, K. Hess, M. Altarelli, R.D. Dupuis, and P.D. Dapkus, Solid State. Commun.31, 1033 (1979).

    Article  CAS  Google Scholar 

  35. E.A. Rezek, B.A. Vojak, R. Chin, and N. Holonyak, Jr., Appl. Phys. Lett.36, 744 (1980).

    Article  CAS  Google Scholar 

  36. S.W. Kirchoefer, E.A. Rezek, B.A. Vojak, and N. Holonyak, Jr., IEEE J. Quantum Electron.QE-17, to be published (Feb., 1981).

  37. R.J. Roedel and V.G. Keramidas, J. Appl. Phys.50, 353 (1979).

    Article  Google Scholar 

  38. B. Wakefield, Appl. Phys. Lett.33, 408 (1978).

    Article  CAS  Google Scholar 

  39. M.B. Small and R. Ghez, J. Appl. Phys.50, 5322 (1979).

    Article  CAS  Google Scholar 

  40. M. Feng, Ph.D. Thesis, University of Illinois, 1979 (unpublished); also, E.A. Rezek, unpublished data.

  41. R.J. Nelson, Appl. Phys. Lett..35, 654 (1979).

    Article  CAS  Google Scholar 

  42. N. Hlonyak, Jr., B.A. Vojak, W.D. Laidig, K. Hess, J.J. Coleman, and P.D. Dapkus, Appl. Phys. Lett.37, 136 (1980).

    Article  Google Scholar 

  43. M.J. Ludowise, N. Holonyak, Jr., P.D. Wright, B.A. Vojak, E.A. Rezek, and H.W. Korb, J. Appl. Phys.48, 4287 (1977).

    Article  CAS  Google Scholar 

  44. A. Pinczuk, J.M. Worlock, R.E. Nahory, and M.A. Pollack, Appl. Phys. Lett.33, 461 (1978). $

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezek, E.A., Vojak, B.A., Chin, R. et al. Thin-layer liquid phase epitaxy of InGaPAs heterostructures in short intervals (< 100 ms): Non-diffusion-limited crystal growth. J. Electron. Mater. 10, 255–285 (1981). https://doi.org/10.1007/BF02654912

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654912

Key words

Navigation