Skip to main content
Log in

Annealing effects on electrical property depth profiles of BF2 and P implanted polycrystalline Si determined by differential hall effect metrology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Differential Hall effect metrology (DHEM) was used to accurately and effectively evaluate the carrier concentration, mobility, and resistivity depth profiles at nano-scale resolution for BF2 and P implanted poly-Si layers after RTA (750–950 °C) and CO2 laser (115–135 W) annealing. Microstructure was characterized by transmission electron microscopy (TEM), total dopant concentration was measured by secondary ion mass spectrometer (SIMS). After implantation, the amorphous-Si (a-Si) surface was found to recover fully by RTA annealing, however a residual a-Si layer remained at the surface after CO2 laser annealing. The carrier concentration and active ratio at the a-Si regrowth region was higher than deeper into the samples. The active ratio could reach ~ 100% at the regrowth region for the CO2 laser annealed samples, but the mobility values deteriorated due to impurity scattering. Away from the regrowth region near the surface, RTA could produce higher carrier concentration and active ratio compared to CO2 laser annealing. The suitable carrier concentration value was ~ E + 19 #/cm3 to obtain relatively high mobility of ~ 40 cm2/V s for the BF2 and P implanted poly-Si. The resistivity was related to the carrier concentration and to the presence of the a-Si residue at the surface. It was demonstrated that DHEM in conjunction with SIMS and TEM can be successfully employed to evaluate, in detail, the electrical properties in ultra-shallow junctions of poly-Si and to correlate these electrical properties to process conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.B. Semicond, Sci. Technol. 10, 721 (1995). https://doi.org/10.1088/0268-1242/10/6/001

    Article  Google Scholar 

  2. K.F. Lee, J.F. Gibbons, K.C. Saraswat, T.I. Kamins, Appl. Phys. Lett. 35, 173 (1979). https://doi.org/10.1063/1.91025

    Article  CAS  Google Scholar 

  3. J.Y. Lin, M.P.V. Kumar, T.S. Chao, IEEE Electron Device Lett. 39, 1 (2017). https://doi.org/10.1109/LED.2017.2779451

    Article  Google Scholar 

  4. P. Jeanjean, P. Sellitto, J. Sicartt, J.L. Robert, G. Chaussemyt, A.L. Semicond, Sci. Technol. 6, 1130 (1991). https://doi.org/10.1088/0268-1242/6/12/005

    Article  CAS  Google Scholar 

  5. M.L. Berre, P. Kleimann, B. Semmache, D. Barbier, P. Pinard, Sens. Actuator A 54, 700 (1996). https://doi.org/10.1016/S0924-4247(97)80041-6

    Article  Google Scholar 

  6. L. Ristic, M.L. Kniffin, R. Gutteridge, H.G. Hughes, Thin Solid Films 220, 106 (1992). https://doi.org/10.1016/0040-6090(92)90556-Q

    Article  Google Scholar 

  7. W. Ahmed, A. Afzal, J. Mater. Sci. 34, 4955 (1999). https://doi.org/10.1023/A:1004707605012

    Article  CAS  Google Scholar 

  8. P.H. Tsien, S.C. Tsou, M. Takai, D.R. Söhenthaler, M. Ramin, H. Ryssel, I. Ruge, K. Wittmaack, Phys. Status Sol. (a) 63, 547 (1981). https://doi.org/10.1002/pssa.2210630221

    Article  CAS  Google Scholar 

  9. P.H. Tsien, J. Götzlich, H. Ryssel, I. Ruge, J. Appl. Phys. 53, 663 (1982). https://doi.org/10.1063/1.329974

    Article  CAS  Google Scholar 

  10. J. Narayan, R.B. James, O.W. Holland, M.J. Aziz, J. Vac. Sci. Technol. A 3, 1836 (1985). https://doi.org/10.1116/1.573387

    Article  CAS  Google Scholar 

  11. M. Blomberg, K. Naukkarinen, T. Tuomi, V.M. Airaksinen, M. Luomajärvi, E. Rauhala, J. Appl. Phys. 54, 2327 (1983). https://doi.org/10.1063/1.332343

    Article  CAS  Google Scholar 

  12. S. Qin, S.A. Prussin, J. Reyes, Y.J. Hu, A. McTeer, IEEE Trans. Plasma Sci. 39, 587 (2010). https://doi.org/10.1109/TPS.2010.2089702

    Article  CAS  Google Scholar 

  13. E.V. Monakhov, B.G. Svensson, M.K. Linnarsson, A.L. Magna, M. Italia, V. Privitera, G. Fortunato, M. Cuscunà, L. Mariucci, Mater. Sci. Eng. B 124–125, 232 (2005). https://doi.org/10.1016/j.mseb.2005.08.059

    Article  CAS  Google Scholar 

  14. D.F. Downey, J.W. Chow, E. Ishida, K.S. Jones, Appl. Phys. Lett. 73, 1263 (1998). https://doi.org/10.1063/1.122146

    Article  CAS  Google Scholar 

  15. R. Mahamdi, F. Mansour, E. Scheid, P.T. Boyer, L. Jalabert, Jpn. J. Appl. Phys 40, 6723 (2001). https://doi.org/10.1143/JJAP.40.6723

    Article  CAS  Google Scholar 

  16. B. Zaidi, B. Hadjoudja, B. Chouial, S. Gagui, H. Felfli, A. Chibani, SILICON 7, 275 (2015). https://doi.org/10.1007/s12633-014-9186-2

    Article  CAS  Google Scholar 

  17. B. Zaidi, B. Hadjoudja, B. Chouial, S. Gagui, H. Felfli, A. Magramene, A. Chibani, SILICON 7, 293 (2015). https://doi.org/10.1007/s12633-015-9282-y

    Article  CAS  Google Scholar 

  18. B. Zaidi, B. Hadjoudja, C. Shekhar, B. Chouial, R. Li, M.V.M. Rao, S. Gagui, A. Chibani, SILICON 8, 513 (2016). https://doi.org/10.1007/s12633-015-9359-7

    Article  CAS  Google Scholar 

  19. A. Mokhberi, P.B. Griffin, J.D. Plummer, E. Paton, S. McCoy, K. Elliott, IEEE Trans. Electron Devices 49, 1183 (2002). https://doi.org/10.1109/TED.2002.1013274

    Article  CAS  Google Scholar 

  20. M. Murti, K. Reddy, Phys. Status Sol. (a) 119, 237 (1990). https://doi.org/10.1002/pssa.2211190128

    Article  CAS  Google Scholar 

  21. H. Puchner, S. Selberherr, IEEE Trans. Electron Devices 42, 1750 (1995). https://doi.org/10.1109/16.464423

    Article  CAS  Google Scholar 

  22. S. Tian, M.F. Morris, S.J. Morris, B. Obradovic, G. Wang, A.F. Tasch, C.M. Snell, IEEE Trans. Electron Devices 45, 1226 (1998). https://doi.org/10.1109/16.678523

    Article  CAS  Google Scholar 

  23. A. Florakis, E. Verrelli, D. Giubertoni, G. Tzortzis, D. Tsoukalas, Thin Solid Films 518, 2551 (2010). https://doi.org/10.1016/j.tsf.2009.09.140

    Article  CAS  Google Scholar 

  24. J. Tong, F. Suo, J. Ma, L.Y.M. Tobing, L. Qian, D.H. Zhang, Adv. OptoElectron 2, 180026 (2019). https://doi.org/10.29026/oea.2019.180026

    Article  CAS  Google Scholar 

  25. S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, F. Torregrosa, D. Tsoukalas, IEEE Trans. Electron Devices 61, 696 (2014). https://doi.org/10.1109/TED.2014.2299311

    Article  CAS  Google Scholar 

  26. J. Xie, C. Lee, M.F. Wang, Y. Liu, H. Feng, J. Micromech. Microeng. 19, 125029 (2009). https://doi.org/10.1088/0960-1317/19/12/125029

    Article  CAS  Google Scholar 

  27. B. Meyerson, W. Olbricht, J. Electrochem. Soc. 131, 2361 (1984). https://doi.org/10.1149/1.2115258

    Article  CAS  Google Scholar 

  28. M.Y. Ghannam, R.W. Dutton, Appl. Phys. Lett. 52, 1222 (1988). https://doi.org/10.1063/1.99164

    Article  CAS  Google Scholar 

  29. H.J. Hoffmann, H. Nakayama, T. Nishino, Y. Hamakawa, Appl. Phys. A 33, 47 (1984). https://doi.org/10.1007/BF01197085

    Article  Google Scholar 

  30. T. Alzanki, R. Gwilliam, N. Emerson, B.J. Sealy, Appl. Phys. Lett. 85, 1979 (2004). https://doi.org/10.1063/1.1792378

    Article  CAS  Google Scholar 

  31. S. Qin, S.A. Prussin, J. Reyes, Y.J. Hu, A. McTeer, IEEE Trans. Plasma Sci. 37, 1754 (2009). https://doi.org/10.1109/TPS.2009.2028144

    Article  CAS  Google Scholar 

  32. J. Borland, S.S. Chaung, T.Y. Tseng, A. Joshi, B. Basol, Y.J. Lee, T. Kuroi, T. Tabata, K. Huet, G. Goodman, N. Khapochkina, ECS Trans. 86, 357 (2018). https://doi.org/10.1149/08607.0357ecst

    Article  CAS  Google Scholar 

  33. L. Bouro, D. Tsoukalas, J. Phys. E 20, 541 (1987)

    Article  CAS  Google Scholar 

  34. H.Y. Chang, Y.C.S. Wu, C.H. Chang, K.L. Lin, A. Joshi, B.M. Basol, IEEE Trans. Semicond. Manuf. 34, 357 (2021). https://doi.org/10.1109/TSM.2021.3074644

    Article  Google Scholar 

  35. A. Joshi, B.M. Basol, ECS Trans. 98, 405 (2020). https://doi.org/10.1149/09805.0405ecst

    Article  CAS  Google Scholar 

  36. C. Bonafos, D. Mathiot, A. Claverie, J. Appl. Phys. 83, 3008 (1998). https://doi.org/10.1063/1.367056

    Article  CAS  Google Scholar 

  37. Y.S. Lai, J.S. Chen, Y.S. Ho, H.L. Sun, K.B. Huang, Mat. Res. Soc. Symp. Proc. 792, 269 (2003). https://doi.org/10.1557/PROC-792-R3.13

    Article  Google Scholar 

  38. S. Qin, IEEE Trans. Electron Devices 62, 2724 (2015). https://doi.org/10.1109/TED.2015.2454441

    Article  CAS  Google Scholar 

  39. B. Zaidi, B. Hadjoudja, H. Felfli, A. Chibani, Turk. J. Phys. 35, 185 (2011)

    CAS  Google Scholar 

  40. G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electron Devices 30, 764 (1983). https://doi.org/10.1109/T-ED.1983.21207

    Article  Google Scholar 

  41. D.K. Schroder, R.N. Thomas, J.C. Swartz, IEEE J. Solid-State Circuits 13, 180 (1978). https://doi.org/10.1109/JSSC.1978.1051012

    Article  Google Scholar 

  42. N.A. Almuslet, S.A. Mohammed, Phys. J. 1, 45 (2015)

    Google Scholar 

Download references

Funding

This work was supported by Ministry of Science and Technology, Taiwan (Grant Nos. MOST 110-2221-E-492-002 and MOST 110-2119-M-002-018–MBK).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FYL and KLL; Investigation, FYL and CHC; Methodology, FYL and CHC; Supervision, YSW and KLL; Writing—original draft, FYL and KLL; Writing—review & editing, BMB and AJ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to YewChung Sermon Wu or Kun-Lin Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies involving human participants and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, FY., Wu, Y.S., Joshi, A. et al. Annealing effects on electrical property depth profiles of BF2 and P implanted polycrystalline Si determined by differential hall effect metrology. J Mater Sci: Mater Electron 33, 16272–16285 (2022). https://doi.org/10.1007/s10854-022-08520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08520-2

Navigation