Skip to main content
Log in

Cauchy index computation

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

Computing the Cauchy index of a rational fractionQ/P betweena andb is important in most of the basic algorithms of real algebraic geometry: real root counting, exact sign determination, Routh-Hurwitz problem, signature of a Hankel matrix. One way to compute the Cauchy index ofQ/P is to compute some variant of the Euclidean remainder sequence ofP andQ and to compute the signs of the successive remainders evaluated ata andb. So, we want to compute efficiently the signs of the polynomials in the Euclidean remainder sequence evaluated at a given point. In the first part of the paper, we are only interested in counting arithmetic operations and comparisons. For input polynomials of degrees bounded byd we design an algorithm with complexity\(O(\mathcal{M}(d)\log (d + 1))\) for computing the Cauchy index based on the strategy of a known efficient algorithm for computing a GCD; here\(\mathcal{M}(d)\) denotes the cost of multiplying polynomials of degree at mostd. One has\(\mathcal{M}(d) = O(d\log (d + 1))\) if the coefficient field allows Fourier transform, and\(\mathcal{M}(d) = O(d\log (d + 1)\log \log (d + 2))\) otherwise. In the second part of the paper we are interested in the bit complexity when the coefficients ofP andQ are integers of size τ. A better way to compute the Cauchy index is then to evaluate the values of some variant of the subresultants rather than the values of the remainders. For polynomials of bit size τ we design an algorithm with bit complexity\(O(\mathcal{M}(d,\sigma )\log (d + 1))\) with σ=O(dτ) where\(\mathcal{M}(d,\sigma ) = O(d\sigma \cdot \log (d\sigma ) \cdot \log \log (d\sigma ))\) is Schönhage’s bound for multiplication of integer polynomials of degrees bounded byd and bit sizes bounded by σ in the multitape Turing machine model. So our bound isO(d 2τ·log(dτ)·log log(dτ)·log(d+1)). The same bound holds for computing the signature of a regular Hankel matrix. Our analysis shows a new and natural exact divisibility for subresultants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ducos,Algorithme de Bareiss, algorithmes des sous-résultants, Prépublication, Université de Poitiers.

  2. F. R. Gantmacher, Théorie des matrices, tome I, Dunod 1966 and Springer-Verlag 1986.

  3. L. Gemignani,Computing the inertia of Bézout and Hankel matrices, CALCOLO28, (1991) 267–274.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Gonzalez, H. Lombardi, T. Recio, M.-F. Roy,Spécialisation de la suite de Sturm et sous-résultants I, Informatique théorique et applications24, (1990) 561–588.

    MATH  Google Scholar 

  5. L. Gonzalez, H. Lombardi, T. Recio, M.-F. Roy,Spécialisation de la suite de Sturm, Informatique théorique et applications28, (1994) 1–24.

    MATH  Google Scholar 

  6. L. Gonzalez, H. Lombardi, T. Recio, M.-F. Roy,Sturm- Habicht sequence, determinants and real roots of univariate polynomials, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, B. Caviness and J. Johnson, Eds. Springer-Verlag Wien, New York 1994, to appear.

    Google Scholar 

  7. W. Habicht,Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens, Comm. Math. Helvetici21, (1948) 99–116.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Henrici, Applied and computational complex analysis, vol. 1, J. Wiley, New York 1974.

    MATH  Google Scholar 

  9. M. Knebusch andC. Scheiderer, Einführung in die reelle Algebra, Vieweg-Studium 63, Aufbaukurs Mathematik, Vieweg, 1989.

    MATH  Google Scholar 

  10. H. T. Kung,On computing reciprocals of power series, Numer. Math.22, (1974) 341–348.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Lazard,Sous-résultants, Manuscrit non publié.

  12. R. Loos,Generalized polynomial remainder sequences, in: Computer algebra, symbolic and algebraic computation, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  13. R. T. Moenck,Fast computation of GCDs, Proc. STOC’73, (1973) 142–151.

  14. C. Quitté,Une démonstration de l’algorithme de Bareiss par l’algèbre extérieure, Manuscrit non publié.

  15. M.-F. Roy,Basic algorithms in real algebraic geometry and their complexity: from Sturm’s theorem to the existential theory of reals, Lectures on Real Geometry in memoriam of Mario Raimondo, de Gruyter Expositions in Mathematics (1996) to appear.

  16. A. Schönhage,Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica1, (1971) 139–144.

    Article  MATH  Google Scholar 

  17. A. Schönhage,Asymptotical fast algorithms for the numerical multiplication and division of polynomials with complex coefficients, in: Proceedings, EUROCAM’82, Marseille, 1982.

  18. A. Schönhage,The fundamental theorem of algebra in terms of computational complexity, preliminary report, Universität Tübingen, 1982.

  19. A. Schönhage andV. Strassen,Schnelle Multiplikation grosser Zahlen, Computing7, (1971) 281–292.

    Article  MATH  Google Scholar 

  20. M. Sieveking,An algorithm for division of power series, Computing10, (1972) 153–156.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Strassen,The Computational Complexity of Continued Fractions, SIAM J. Comp.12/1, (1983) 1–27.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

supported by DFG Heisenberg Grant Li-405/2-2

supported in part by the project ESPRIT-LTR 21.024 FRISCO and by European Community contract CHRX-CT94-0506

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lickteig, T., Roy, MF. Cauchy index computation. Calcolo 33, 337–351 (1996). https://doi.org/10.1007/BF02576008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576008

Keywords

Navigation