Skip to main content
Log in

Discrete energy levels and superconductivity in nanometer-scale Al particles

  • Plenary and Invited Papers
  • Superconductivity
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

We have fabricated single-electron tunneling transistors in which the central island is an aluminum grain with radius in the range 2–10 nm. The corresponding spacing between electron-in-a-box levels is in the range ∼0.01 to ∼1 meV. Using tunneling spectroscopy at 50 mK, we have, for the first time, resolved these discrete levels in a metallic grain. By observing the Zeeman spin splitting in a magnetic field, we can distinguish grains with even vs. odd numbers of electrons. A superconducting energy gap can be seen if the grain is large enough so that the level spacing is smaller than the energy gap. This gap is reduced continuously to zero by a magnetic field of 3–4 Tesla. While the superconducting gap adds to the Coulomb gap in determining the threshold voltage for tunneling into a grain with an initially even number of electrons, it subtracts from the Coulomb gap for a grain with an initially odd number of electrons because the tunneling electron can pair with the odd electron, forming a lower-energy fully-paired state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Averin and K. K. Likharev, in B. L. Altshuler, P. A. Lee, and R. A. Webb (eds),Mesoscopic Phenomena in Solids, Elsevier, New York (1991), p. 169.

    Google Scholar 

  2. M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69 (1992) 1997.

    Article  ADS  Google Scholar 

  3. M. Tinkham, J. M. Hergenrother, and J. G. Lu, Phys. Rev. B51 (1995) 12649.

    Article  ADS  Google Scholar 

  4. M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. B47 (1993) 11599.

    Article  ADS  Google Scholar 

  5. J. G. Lu, J. M. Hergenrother, and M. Tinkham, Phys. Rev. B53 (1996) 3543.

    Article  ADS  Google Scholar 

  6. J. M. Hergenrother, J. G. Lu, M. T. Tuominen, D. C. Ralph, and M. Tinkham, Phys. Rev. B51 (1995) 9407.

    Article  ADS  Google Scholar 

  7. See, for example, M. A. Kastner, Phys. Today 46, No. 1 (1993) 24.

    Article  ADS  Google Scholar 

  8. P. W. Anderson, J. Phys. Chem. Solids 11 (1959) 28.

    Article  ADS  Google Scholar 

  9. J. von Delft, D. S. Golubev, W. Tichy, and A. Zaikin, preprint.

  10. D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74 (1995) 3241.

    Article  ADS  Google Scholar 

  11. C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76 (1996) 688.

    Article  ADS  Google Scholar 

  12. D. C. Ralph, C. T. Black, and M. Tinkham, Physica B 218 (1996) 258.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NSF grant DMR92-07956, ONR grant N00014-96-1-0108, and JSEP grant N00014-89-J-1023, and was performed in part at the Cornell Nanofabrication Facility, funded by the NSF grant ECS-8619049, Cornell University, and industrial affiliates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinkham, M., Ralph, D.C., Black, C.T. et al. Discrete energy levels and superconductivity in nanometer-scale Al particles. Czech J Phys 46 (Suppl 6), 3139–3145 (1996). https://doi.org/10.1007/BF02548121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548121

Keywords

Navigation