Skip to main content
Log in

Unconventional pairing in heavy Fermion metals

  • Plenary and Invited Papers
  • Superconductivity
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing,e.g. heavy fermion, organic and cuprate superconductors. Ginzburg-Landau theory provides a link between the thermodynamic properties of these superconductors and Fermi-liquid theory. The multiple superconducting phases of UPt3 illustrate the role that is played by the Ginzburg-Landau theory in interpreting these novel superconductors. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients areuniversal, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures κ B T ≪ γ ≪ Δ0, where γ is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3 thermal conductivity measurements favor anE 1g orE 2u ground state. Measurements at ultra-low temperatures should distinguish different pairing states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson and P. Morel, Phys. Rev.123, 1911 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett.28, 885 (1972).

    Article  ADS  Google Scholar 

  3. F. Steglichet al., Phys. Rev. Lett.43, 1892 (1979).

    Article  ADS  Google Scholar 

  4. H. Ottet al., Jpn. J. Appl. Phys.S 26, 1882 (1987).

    MathSciNet  Google Scholar 

  5. N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. Journ. Mod. Phys.B1, 687 (1987).

    Article  ADS  Google Scholar 

  6. P. Anderson, Phys. Rev.B30, 4000 (1984).

    Article  ADS  Google Scholar 

  7. G. Volovik and L. Gor'kov, Sov. Phys. JETP Lett.39, 674 (1984).

    Google Scholar 

  8. M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk, Phys. Rev.B39, 7371 (1989).

    Article  ADS  Google Scholar 

  9. D. Scalapino, Phys. Rep.250, 329 (1995).

    Article  Google Scholar 

  10. M. J. Graf, M. Palumbo, D. Rainer, and J. A. Sauls, Phys. Rev.B52, 10588 (1995).

    Article  ADS  Google Scholar 

  11. M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys.—Rapid Comm.102, 367 (1996).

    Article  ADS  Google Scholar 

  12. R. Heffner and M. Norman, Comm. Cond. Matt. Phys.17, 361 (1996).

    Google Scholar 

  13. G. Brulset al., Phys. Rev. Lett.65, 2294 (1990).

    Article  ADS  Google Scholar 

  14. S. Adenwallaet al., Phys. Rev. Lett.65, 2298 (1990).

    Article  ADS  Google Scholar 

  15. R. Joynt, Sup. Sci. Tech.1, 1210 (1988).

    Google Scholar 

  16. D. Hess, T. Tokuyasu, and J. A. Sauls, J. Phys. Cond. Matt.1, 8135 (1989).

    Article  ADS  Google Scholar 

  17. K. Machida and M. Ozaki, J. Phys. Soc. Jpn58, 2244 (1989).

    Article  ADS  Google Scholar 

  18. I. Luk'yanchuk, J. de Phys.I1, 1155 (1991).

    ADS  Google Scholar 

  19. K. Machida and M. Ozaki, Phys. Rev. Lett.66, 3293 (1991).

    Article  ADS  Google Scholar 

  20. D. Chen and A. Garg, Phys. Rev. Lett.70, 1689 (1993).

    Article  ADS  Google Scholar 

  21. J. Sauls, Adv. Phys.43, 113 (1994).

    Article  ADS  Google Scholar 

  22. M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett.58, 131 (1993).

    Google Scholar 

  23. B. Shivaram, T. Rosenbaum, and D. Hinks. Phys. Rev. Lett.57, 1259 (1986).

    Article  ADS  Google Scholar 

  24. R. Joynt, V. Mineev, G. Volovik, and Zhitomirskii, Phys. Rev.B42, 2014 (1990).

    Article  ADS  Google Scholar 

  25. G. Aeppliet al., Phys. Rev. Lett.60, 615 (1988).

    Article  ADS  Google Scholar 

  26. T. Trappmann, H. v. Löhneysen, and L. Taillefer, Phys. Rev.B43, 13714 (1991).

    Article  ADS  Google Scholar 

  27. S. Hayden, L. Taillefer, C. Vettier and J. Flouquet, Phys. Rev.B46, 8675 (1992).

    Article  ADS  Google Scholar 

  28. C. Choi and J. Sauls, Phys. Rev. Lett.66, 484 (1991).

    Article  ADS  Google Scholar 

  29. K. Park and R. Joynt, Phys. Rev.B 53, 12346 (1996).

    Article  ADS  Google Scholar 

  30. B. Lussier. et al., unpublished (1996).

  31. G. Eilenberger, Z. Physik214, 195 (1968).

    Article  ADS  Google Scholar 

  32. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP28, 1200 (1969).

    ADS  Google Scholar 

  33. G. M. Eliashberg, Sov. Phys. JETP34, 668 (1972).

    ADS  Google Scholar 

  34. J. W. Serene and D. Rainer, Phys. Rep.101, 221 (1983).

    Article  ADS  Google Scholar 

  35. A. I. Larkin and Y. N. Ovchinnikov, inNonequilibrium Superconductivity, edited by D. Langenberg and A. Larkin (Elsevier Science Publishers, Amsterdam, 1986), pp. 493–542.

    Google Scholar 

  36. D. Rainer and J. A. Sauls, inSuperconductivity: From Basic Physics to New Developments, edited by P. N. Butcher and Y. Lu (World Scientific, Singapore, 1995), pp. 45–78.

    Google Scholar 

  37. L. D. Landau, Sov. Phys. JETP5, 70 (1959).

    Google Scholar 

  38. G. M. Eliashberg, Zh. Eskp. Teor. Fiz.15, 1151 (1962).

    Google Scholar 

  39. L. J. Buchholtz and G. Zwicknagl, Z. Phys.B23, 5788 (1981).

    Google Scholar 

  40. C. R. Hu, Phys. Rev. Lett.72, 1526 (1994).

    Article  ADS  Google Scholar 

  41. Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451 (1995).

    Article  ADS  Google Scholar 

  42. A. Andreev, Sov. Phys. JETP19, 1228 (1964).

    Google Scholar 

  43. L. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Temp. Phys.101, 1099 (1995).

    Article  ADS  Google Scholar 

  44. C. Choi and P. Muzikar, Phys. Rev.B 36, 54 (1987).

    Article  ADS  Google Scholar 

  45. M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Phys. Rev.B53, 15147 (1996).

    Article  ADS  Google Scholar 

  46. B. Lussier, B. Ellman, and L. Taillefer, Phys. Rev.B 53, 5145 (1996).

    Article  ADS  Google Scholar 

  47. M. Norman, PhysicaC194, 205 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the Max Planck Gesellschaft and the Alexander von Humboldt Stiftung for support. JAS also acknowledges partial support from the NSF through the Science and Technology Center for Superconductivity (DMR 91-20000).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauls, J.A., Rainer, D. Unconventional pairing in heavy Fermion metals. Czech J Phys 46 (Suppl 6), 3089–3096 (1996). https://doi.org/10.1007/BF02548114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548114

Keywords

Navigation