Skip to main content
Log in

The effect of surfaces on the tunneling density of states of an anisotropically paired superconductor

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present calculations of the tunneling density of states in an anisotropically paired superconductor for two different sample geometries: a semi-infinite system with a single specular wall, and a slab of finite thickness and infinite lateral extent. In both cases we are interested in the effects of surface pair breaking on the tunneling spectrum. We take the stable bulk phase to be of dx 2−y2 symmetry. Our calculations are performed within two different band structure environments: an isotropic cylindrical Fermi surface with a bulk order parameter of the form Δ ∼ k 2x −k 2y , and a nontrivial tight-binding Fermi surface with the order parameter structure coming from an antiferromagnetic spin-fluctuation model. In each case we find additional structures in the energy spectrum coming from the surface layer. These structures are sensitive to the orientation of the surface with respect to the crystal lattice, and have their origins in the detailed form of the momentum and spatial dependence of the order parameter. By means of tunneling spectroscopy, one can obtain information on both the anisotropy of the energy gap, ¦Δ(p)¦, as well as on the phase of the order parameter, Δ(p) = ¦Δ(p)¦ eiϕ(p).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Buchholtz and G. Zwicknagl,Phys. Rev. B 23, 5788 (1981).

    Google Scholar 

  2. W. Zhang, J. Kurkijärvi, and E. Thuneberg,Phys. Lett. 109A, 238 (1985).

    Google Scholar 

  3. J. Hara and K. Nagai,Prog. Theor. Phys. 76, 1237 (1986).

    Google Scholar 

  4. W. Zhang, J. Kurkijärvi, and E. Thuneberg,Phys. Rev. B 36, 1987 (1987).

    Google Scholar 

  5. T. Tokuyasu, J. A. Sauls, and D. Rainer,Phys. Rev. B 38, 8823 (1988).

    Google Scholar 

  6. L. J. Buchholtz,Phys. Rev. B 44, 4610 (1991).

    Google Scholar 

  7. N. B. Kopnin, P. I. Soininen, and M. Salomaa,J. Low Temp. Phys. 85, 267 (1991).

    Google Scholar 

  8. C.-R. Hu,Phys. Rev. Lett. 72, 1526 (1994).

    Google Scholar 

  9. S. Kashiwaya and Y. Tanaka,Phys. Rev. B 51, 1350 (1995).

    Google Scholar 

  10. Y. Tanaka and S. Kashiwaya,Phys. Rev. Lett. 74, 3451 (1995).

    Google Scholar 

  11. Y. Nagato and K. Nagai,Phys. Rev. B 51, 16254 (1995).

    Google Scholar 

  12. M. Matsumoto and H. Shiba,J. Phys. Soc. Jpn. 64, 1703 (1995).

    Google Scholar 

  13. L. J. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls,J. Low Temp. Phys. 101, 1079 (1995).

    Google Scholar 

  14. J. W. Serene and D. Rainer,Physics Reports 4, 221 (1983).

    Google Scholar 

  15. Y. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 56, 1590 (1969).

    Google Scholar 

  16. J. Kurkijärvi, D. Rainer, and J. Sauls,Can. J. Phys. 65, 1440 (1987).

    Google Scholar 

  17. R. J. Radtke, S. Ullah, K. Levin, and M. R. Norman,Phys. Rev. B 46, 11975 (1992).

    Google Scholar 

  18. R. J. Radtke and M. R. Norman,Phys. Rev. B 50, 9554 (1994).

    Google Scholar 

  19. M. R. Norman, private communication (1995).

  20. M. F. Atiyah, V. K. Patodi, and I. M. Singer,Proc. Camb. Phil. Soc. 77, 43 (1975).

    Google Scholar 

  21. W. J. Tomasch,Phys. Rev. Lett. 15, 672 (1965).

    Google Scholar 

  22. W. J. Tomasch,Phys. Rev. Lett. 16, 16 (1966).

    Google Scholar 

  23. C. B. Duke,Tunneling in Solids, 1 ed. (Academic Press, New York, 1969), Chap. 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholtz, L.J., Palumbo, M., Rainer, D. et al. The effect of surfaces on the tunneling density of states of an anisotropically paired superconductor. J Low Temp Phys 101, 1099–1121 (1995). https://doi.org/10.1007/BF00754526

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754526

Keywords

Navigation