Il Nuovo Cimento D

, Volume 11, Issue 12, pp 1773–1784 | Cite as

Infrared angular spectroscopy characterization of epitaxial layers of n-type silicon grown on N+ or P+ substrates

  • M. Geddo
  • D. Maghini
  • A. Stella
Article

Summary

In this paper the technique of infrared angular spectroscopy applied to the characterization of epitaxial layers of n-type silicon grown on N+ or P+ substrates is illustrated. Some results are reported and discussed concerning films having a free-carrier concentration ranging from 1014 cm−3 to 1017 cm−3 and thickness of the order of 10 μm. A significant comparison with results obtained by other techniques (four-point probe, spreading resistance, C−V plots, etc.) is performed and a few simple conclusions are drawn.

PACS

78.20 Optical properties and materials 

Riassunto

In questo lavoro è illustrata una applicazione della tecnica della spettroscopia angolare nell’infrarosso per caratterizzare film epitassiali di silicio tipo-n cresciuti su substrati N+ o P+. Sono riportati e discussi alcuni risultati concernenti film con concentrazione di portatori liberi nell’intervallo fra 1014 cm−3 e 1017 cm−3 e spessori dell’ordine di 10 μm. Viene effettuato un confronto con risultati ottenuti con altre tecniche (tecnica delle quattro punte, spreading resistance, curve C−V, etc.) e vengono riportate alcune semplici e significative conclusioni.

Резюме

В этой статье техника инфракрасной спектроскопии применяется для определения характеристик эпитаксиальных слоев кремния n-типа, выращенных на N +-или P +-подложках. Приводятся и сообщаются некоторые результаты, касающиеся пленок, имежщих концентрацию свободных носителей в области от 1014 см−3 до 1017 см−3 и толщину порядка 10 мкм. Проводится сравнение с результатами, полученными с помощью других методов.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Schumann and E. Gadner: Trans. Metall. Soc. AIME, 233, 602 (1965).Google Scholar
  2. (2).
    L. Valdes: Proc. Inst. Radio Eng., 42, 420 (1954).Google Scholar
  3. (3).
    R. G. Mazur and D. M. Dickey: J. Electrochem. Soc., 113, 225 (1966).CrossRefGoogle Scholar
  4. (4).
    P. J. Severin and G. J. Poodt: J. Electrochem. Soc., 109, 1055 (1972).Google Scholar
  5. (5).
    G. Baccarani and M. Rudan: Solid State Electron., 23, 65 (1980).CrossRefADSGoogle Scholar
  6. (6).
    D. E. Aspnes, S. M. Kelso, C. G. Olson and D. W. Lynch: Phys. Rev. Lett., 48, 1863 (1982).CrossRefADSGoogle Scholar
  7. (7).
    D. E. Aspnes, M. Erman, J. B. Theeten, P. Chambon and S. M. Kelso: J. Appl. Phys., 56, 2664 (1984).CrossRefGoogle Scholar
  8. (8).
    M. Geddo, D. Maghini, A. Stella and M. Cottini: J. Appl. Phys., 58, 4733 (1985).CrossRefADSGoogle Scholar
  9. (9).
    M. Geddo, D. Maghini, A. Stella and M. Cottini: J. Electrochem. Soc., 133, 1414 (1986).CrossRefGoogle Scholar
  10. (10).
    A. Borghesi, M. Geddo, G. Guizzetti, D. Maghini, A. Stella, U. Campisano and E. Rimini: Nuovo Cimento D, 10, 979 (1988).CrossRefADSGoogle Scholar
  11. (11).
    A. Abagygam, G. A. Yvanov, A. P. Izergin and Yu. E. Shanuzin: Sov. Phys., 6, 985 (1972).Google Scholar
  12. (12).
    P. A. Schumann, R. P. Phillips and P. J. Olshefski: J. Electrochem. Soc., 113, 368 (1966).CrossRefGoogle Scholar
  13. (13).
    Annual Book of ASTM Standards, pat 43 Electronics (1981), p. 448.Google Scholar
  14. (14).
    M. Born and E. Wolf: in Principles of Optics (Pergamon Press, London, 1970), Chap. 13, p. 632.Google Scholar
  15. (15).
    P. A. Schumann, W. A. Keenan, A. H. Tong, H. H. Gegenwarth and C. P. Schneider: J. Electrochem. Soc., 118, 145 (1972).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1989

Authors and Affiliations

  • M. Geddo
    • 1
  • D. Maghini
    • 1
  • A. Stella
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàPaviaItalia

Personalised recommendations