Skip to main content
Log in

Evolution of nanostructure in hydrogenated amorphous silicon thin films with substrate temperature studied by Raman mapping, Raman scattering and spectroscopic ellipsometry

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Raman mapping and Raman scattering studies have been performed on hydrogenated silicon thin films deposited at different substrate temperature by rf-PECVD technique. In Raman mapping a clear difference in contrast, corresponding to different phases, was observed for films deposited at substrate temperature (Ts) ≥ 130 °C. The Raman spectra recorded at bright and dark spots in Raman image correspond to nanocrystalline and amorphous phase respectively. The fractional area of bright spots in Raman mapping was found to increase with increasing Ts. Also, the nanocrystalline fraction and size of nanocrystallites is found to increase with increasing Ts. These studies suggest that nucleation sites for the growth of nc-Si:H are formed at substrate temperature as low as 130 °C. With further increase in Ts more and more nucleation sites are formed which subsequently enhance crystallinity in these films. Films deposited at Ts ≥ 150 °C have larger band gap, higher roughness and higher photosensitivity and are of excellent device quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.F. i Morral, P.R. i Cabarrocas, C. Clerc, Phys. Rev. B 69, 125307 (2004)

    Article  Google Scholar 

  2. A. Remolina, B.M. Monroy, M.F. Garcia-Sanchez, A. Ponce, M. Bizarro, J.C. Alonso, A. Ortiz, G. Santana, Nanotechnology 20, 245604 (2009)

    Article  Google Scholar 

  3. M. Moreno, A. Torres, R. Ambrosio, C. Zuñiga, A. Torres-Rios, K. Monfil, P. Rosales, A. Itzmoyotl, Mater. Sci. Eng. B 176, 1373–1377.( 2011)

  4. A. Matsuda, J. Non-Cryst. Solids 338–340, 1–12 (2004)

    Article  Google Scholar 

  5. S. Sriraman, E.S. Aydil, D. Maroudas, J. Appl. Phys. 92, 842–852 (2002)

    Article  Google Scholar 

  6. A.H.M. Smets, W.M.M. Kessels, D.C. Marra, E.S. Aydil, D.C. Schram, M.C.M. van de Sanden. Thin Solid Films 383, 154–160 (2001)

    Article  Google Scholar 

  7. T. Kuwahara, H. Ito, K. Kawaguchi, Y. Higuchi, N. Ozawa, M. Kubo, Sci. Rep. 5, 9052 (2015)

    Article  Google Scholar 

  8. X. Tan, G. Ouyang, G. Yang, Phys Rev B 73, 195322 (2006)

    Article  Google Scholar 

  9. M. Valipa, T. Bakos, D. Maroudas, Phys Rev B 74, 216102 (2006)

    Article  Google Scholar 

  10. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Appl. Phys. Lett. 86, 041909 (2005)

    Article  Google Scholar 

  11. R.W. Smith, D.J. Srolovitz, J. Appl. Phys. 79, 1448 (1996)

    Article  Google Scholar 

  12. N.M. Liao, W. Li, Y.D. Jiang, Y.J. Kuang, K.C. Qi, Z.M. Wu, S.B. Li, Appl. Phys. A 91, 349–352 (2008)

    Article  Google Scholar 

  13. D. Beeman, R. Tsu, M.F. Thorpe, Phys Rev B 32, 874–878 (1985)

    Article  Google Scholar 

  14. P. Alpuim, V. Chu, J.P. Conde, J. Appl. Phys. 86, 3812 (1999)

    Article  Google Scholar 

  15. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  Google Scholar 

  16. R. Grigorovici, J. Tauc, A. Vancu, Phys Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  17. A.R. Zanatta, I. Chambouleyron, Phys Rev B, 53, 3833–3836 (1996)

    Article  Google Scholar 

  18. S. Kageyama, M. Akagawa, H. Fujiwara, Phys. Rev. B 83, 195205 (2011)

    Article  Google Scholar 

  19. M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, M.F. Cerqueira, E. Alves, M. Stepikhova, Appl. Phys. Lett. 82, 2993–2995 (2003)

    Article  Google Scholar 

  20. S.-B. Li, Z.-M. Wu, Y.-D. Jiang, J.-S. Yu, W. Li, N.-M. Liao, J. Phys. D 41, 105207 (2008)

    Article  Google Scholar 

  21. T. Karabacak, Y.P. Zhao, G.C. Wang, T.M. Lu, Phys Rev B 64, 085323 (2001)

    Article  Google Scholar 

  22. J.T. Drotar, Y.P. Zhao, T.M. Lu, G.C. Wang, Phys. Rev. B 61, 3012–3021 (2000)

    Article  Google Scholar 

  23. T. Toyama, Y. Sobajima, H. Okamoto, Philos. Phenomenol. 89, 2491–2504 (2009)

    Google Scholar 

  24. J. Kočka, T. Mates, P. Fojtík, M. Ledinský, K. Luterová, H. Stuchlíková, J. Stuchlík, I. Pelant, A. Fejfar, M. Ito, K. Ro, H. Uyama, J. Non-Cryst. Solids 338–340, 287–290 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank central instrument facility (CIF), IIT Guwahati for Raman, spectroscopic ellipsometry, AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madaka, R., Kanneboina, V. & Agarwal, P. Evolution of nanostructure in hydrogenated amorphous silicon thin films with substrate temperature studied by Raman mapping, Raman scattering and spectroscopic ellipsometry. J Mater Sci: Mater Electron 28, 8885–8894 (2017). https://doi.org/10.1007/s10854-017-6618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6618-y

Keywords

Navigation