Advertisement

The Histochemical Journal

, Volume 27, Issue 10, pp 727–737 | Cite as

Nitric oxide in physiology and pathology

  • Brendan J. R. Whittle
Review

Summary

Nitric oxide (NO) can exert a multitude of biological actions. NO, formed froml-arginine by a calcium-dependent enzyme (NO synthase) plays a key physiological role in regulating vascular tone and integrity. NO, formed by a constitutive neuronal isoform of NO synthase, likewise plays an important neuromodulator role. By contrast, high levels of NO can be generated following induction of a calcium-independent isoform of NO synthase. This excessive production of NO can provoke hypotension such as that observed in septic shock, and can exert cytotoxic actions leading to tissue injury and inflammation. Selective inhibitors of this inducible isoform thus have therapeutic potential in a number of disease states.

Keywords

Oxide Nitric Oxide Biological Action Nitric Oxide Septic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams,L. B.,Hibbs,J. B.Jr,Taintor,R. R. &Krahenbuhl,J. L. (1990) Microbiostatic effect of murine macrophages forToxoplasma gondii: role of synthesis of inorganic nitrogen oxides froml-arginine.J. Immunol. 144, 2725–29.PubMedGoogle Scholar
  2. Aisaka,K.,Gross,S. S.,Griffith,O. W. &Levi,R. (1989) NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis is a potent pressor agent in the guinea-pig: does nitric oxide regulate blood pressurein vivo?Biochem. Biophys. Res. Commun. 160, 881–6.CrossRefPubMedGoogle Scholar
  3. Amezcua,J. L.,Dusting,G. J.,Palmer,R. M. J. &Moncada,S. (1988) Acetylcholine induces vasodilation in the rabbit isolated heart through the release of nitric oxide, the endogenous nitrovasodilator.Er. J. Pharmacol. 95, 830–4.Google Scholar
  4. Beckman,J. S.,Beckman,T. W.,Chen,J.,Marshall,P. A. &Freeman,B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl Acad. Sci. USA. 87, 1620–4.PubMedGoogle Scholar
  5. Billiar,T. R.,Curran,R. D.,Stuehr,D. J.,Stadler,J.,Simmons,R. L. &Murray,S. A. (1990) Inducible cytosolic enzyme activity for the production of nitrogen oxides froml-arginine in hepatocytes.Biochem. Biophys. Res Commun. 168, 1034–40.CrossRefPubMedGoogle Scholar
  6. Bissonnette,E. Y.,Hogaboam,C. M.,Wallace,J. L. &Befus,A. D. (1991) Potentiation of tumour necrosis factor-α-mediated cytotoxicity of mast cells by their production of nitric oxide.J. Immunol. 147, 3060–5.PubMedGoogle Scholar
  7. Boeckxstaens,G. E.,Pelckmans,P. A.,Bogers,J. J.,Bult,H.,DeMan,J. G.,Ossterbosch,L.,Herman,A. G. &VanMaercke,Y. M. (1991) Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus.J. Pharmacol. Exp. Ther. 256, 441–7.PubMedGoogle Scholar
  8. Bogle,R. G.,Moncada,S.,Pearson,J. D. &Mann,G. E. (1992) Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial celll-arginine transporter.Br. J. Pharmacol. 105, 768–70.PubMedGoogle Scholar
  9. Boughton-Smith,N. K.,Evans,S. M.,Laszlo,F.,Whittle,B. J. R. &Moncada,S. (1993a) The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat.Br J. Pharmacol. 110, 1189–95.Google Scholar
  10. Boughton-Smith, N. K., Evans, S. M., Whittle, B. J. R. &Moncada S. (1993b) Induction of nitric oxide synthase in rat intestine and its association with tissue injury. Agents Actions 38, Special Conference Issue, C125-6.Google Scholar
  11. Boughton-Smith,N. K.,Evans,S. M.,Hackney,C. J.,Cole,A. T.,Balsitis,M.,Whittle,B. J. R. &Moncada,S. (1993c) Differential changes in nitric oxide synthase activity in ulcerative colitis and Crohn's disease.Lancet 342, 338–40.Google Scholar
  12. Bredt,D. S. &Snyder,S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme.Proc. Natl Acad. Sci. USA 87, 682–5.PubMedGoogle Scholar
  13. Bredt,D. S.,Hwang,P. M. &Snyder,S. H. (1990) Localization of nitric oxide synthase indicating a neural role of nitric oxide. Nature347, 768–70.CrossRefPubMedGoogle Scholar
  14. Bredt,D. S.,Hwang,P. M.,Glatt,C. E.,Lowenstein,C.,Reed,R. R. &Snyder,S. H. (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase.Nature 351, 714–8.CrossRefPubMedGoogle Scholar
  15. Buga,G. M.,Gold,M. E.,Wood,K. S.,Chaudhuri,G. &Ignarro,L. J. (1989) Endothelium-derived nitric oxide relaxes nonvascular smooth muscle.Eur. J. Pharmacol. 161, 61–72.CrossRefPubMedGoogle Scholar
  16. Bult,H.,Boeckxstaens,G. E.,Pelckmans,P. A.,Jordaens,F. H. &VanMaercke,Y. M. &Herman,A. G. (1990) Nitric oxide as an inhibitor non-adrenegic non-cholinergic neurotransmitter.Nature 345, 346–7.CrossRefPubMedGoogle Scholar
  17. Busse,R. &Mulsch,A. (1990) Induction of nitric oxide synthase by cytokines on vascular smooth muscle cells.FEBS Lett. 275, 87–90.CrossRefPubMedGoogle Scholar
  18. Buxton,L. L.,Cheek,D. J.,Exkman,D.,Westfall,D. P.,Sanders,K. M. &KeefK. D. (1993) NG-nitro-l-arginine methyl ester and other alkyl esters of arginine are muscarinic receptor antagonists.Circ. Res. 72, 387–95.PubMedGoogle Scholar
  19. Cho,J. H.,Xie,Q-W.,Calaycay,J.,Mumford,R. A.,Swiderek,K. M.,Lee,T. D. &Nathan,C. (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages.J. Exp. Med. 176, 599–604.CrossRefPubMedGoogle Scholar
  20. Chu,A.,Lin,C-C.,Chambers,D. E.,Kuehl,W. D.,Palmer,R. M. J.,Moncada,S. &Cobb,FR. (1991) Effects of inhibition of nitric oxide formation on basal tone and endothelium dependent responses of the corony arteries in awake dogs.J. Clin. Invest. 87, 1964–8.PubMedGoogle Scholar
  21. Corbett,J. A.,Tilton,R. G.,Chang,K.,Hasan,K. S.,Ido,Y.,Wang,J. L.,Sweetland,M. A.,Lancaster,J. R.Jr,Williamson,J. R. &Mcdaniel,M. L. (1992) Aminoguanidine, a novel inhibitor of nitric oxide formation prevents diabetic vascular dysfunction.Diabetes 41, 552–6.PubMedGoogle Scholar
  22. DeBelderA. J.,Radomski,M. W.,Why,B. H. J. F.,Richardson,P. J.,Bucknall,C. A.,Salas,E.,Martin,J. F. &Moncada,S. (1993) Nitric oxide synthase activities in human myocardium.Lancet 341, 84–5.PubMedGoogle Scholar
  23. Dent,J.,Dodds,W. J.,Hogan,W. J.,Wood,J. D. &Arndorfer,R. C. (1979) Depressant effect of sodium nitroprusside on the lower esophageal sphincter of the opossum.Gastroenterology 76, 784–9.PubMedGoogle Scholar
  24. DiRosa,M.,Radomski,M.,Carnuccio,R. &Moncada,S. (1990) Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages.Biochem. Biophys. Res. Commun. 172, 1246–52.PubMedGoogle Scholar
  25. Dwyer,M. A.,Bredt,D. S. &Snyder,S. H. (1991) Nitric oxide synthase: irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo.Biochem. Biophys. Res. Commun. 76, 1136–41.Google Scholar
  26. Evans,T.,Carpenter,A. &Cohen,J. (1992) Purification of a distinctive form of endotoxin induced nitric oxide synthase from rat liver.Proc. Natl Acad. Sci, USA 89, 5361–5.PubMedGoogle Scholar
  27. Feelisch,M. (1991) The biochemical pathways of nitric oxide formation from nitrovasodilators: appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions.J. Cardiovasc. Pharmacol. 17 (suppl 3), S25–33.Google Scholar
  28. Feelisch,M. &Noack,E. A. (1987) Correlation between nitric oxide formation during degradation of organic nitriates and activation of guanylate cyclase.Eur. J. Pharmacol. 139, 19–30.CrossRefPubMedGoogle Scholar
  29. Fleming,I.,Julou-Schaefer,G.,Gray,G. A.,Parrat,J. R. &Stocklet,J-C. (1991) Evidence that anl-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin.Br. J. Pharmacol. 103, 1047–52.PubMedGoogle Scholar
  30. Forstermann,U.,Schmidt,H. H. H. W.,Pollock,J. S.,Sheng,H.,Mitchell,J. A.,Warner,T. D.,Nakane,M. &Murad,F. (1991) Isoforms of nitric oxide synthase characterization and purification from different cell types.Biochem. Pharmacol. 42, 1849–57.CrossRefPubMedGoogle Scholar
  31. Furchgott,R. F. &Zawadzki,J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature 288, 373–6.CrossRefPubMedGoogle Scholar
  32. Gardiner,S. M.,Compton,A. M.,Bennett,T.,Palmer,R. M. J. &Moncada.S. (1990) Control of regional blood flow by endothelium-derived nitric oxide.Hypertension 15, 486–92.PubMedGoogle Scholar
  33. Garthwaite,J.,Charles,S. L. &Chess-Williams,R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain.Nature 336, 385–8.CrossRefPubMedGoogle Scholar
  34. Garthwaite,J.,Garthwaite,G.,Palmer,R. M. J. &Moncada,S. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.Eur. J. Pharmacol. 172, 413–6.PubMedGoogle Scholar
  35. Gibson,A.,Mirzazadeh,S.,Hobbs,A. J. &Moore,P. K. (1990) L-NG-monomethyl arginine and L-NG-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anoccoccygeus muscle.Br. J. Pharmacol. 99, 602–6.PubMedGoogle Scholar
  36. Gillespie,J. S.,Liu,X. &Martin,W. (1990) The neurotransmitter of the non-adrenergic noncholinergic inhibitory nerves to smooth muscle of the genital system. InNitric Oxide from l-arginine: a Bioregulatory System (edited byMoncada,S. &Higgs,E. A.), pp. 147–67. Amsterdam: Elsevier.Google Scholar
  37. Goyal,R. K. &Rattan,S. (1980) Effect of sodium nitroprusside and verapamil on lower esophageal sphincter.Am. J. Physiol. 238, G40–4.PubMedGoogle Scholar
  38. Grisham,M. B.,Ware,K.,Gilelland,H. E.Jr,Gilelland,L. B.,Abell,C. L. &Yamada,T. (1992) Neutrophil-mediated nitrosamine formation: role of nitric oxide in rats.Gastroenterology 103, 1260–6.PubMedGoogle Scholar
  39. Gross,S. S.,Stuehr,D. J.,Aisaka,K.,Jaffe,E. A.,Levi,R. &Griffith,O. W. (1990) Macrophage and endothelial cell nitric oxide synthesis: cell-type selective inhibition by NG-aminoarginine, NG-nitroarginine and NG-methylarginine.Biochem Biophys Res. Commun. 170, 96–103.CrossRefPubMedGoogle Scholar
  40. Gross,S. S.,Jaffe,E. A.,Levi,R. &Kilbourn,R. G. (1991) Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopter-independent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages.Biochem. Biophys. Res. Commun. 178, 823–9.CrossRefPubMedGoogle Scholar
  41. Gruetter,C. A.,Barry,B. K.,Mcnamara,D. B.,Gruetter,D. Y.,Kadowitz,P. J. &Ignarro,L. J. (1979) Relaxation of bovine coronary artery and activation of coronary guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine.J. Cyclic Nucl. Res. 5, 211–24.Google Scholar
  42. Hernandez,L. A.,Grisham,M. B.,Twohig,B.,Arfors,K. E.,Harlan,J. M. &Granger,D. N. (1987) Role of neutrophils in ischemia/reperfusion-induced microvascular injury.Am. J. Physiol. 253, H699–703.PubMedGoogle Scholar
  43. Hibbs,J. B.Jr,Taintor,R. R. &Vavrin,Z. (1987) Macrophage cytotoxicity: role forl-arginine deiminase activity and imino nitrogen oxidation to nitrite.Science 235, 473–6.PubMedGoogle Scholar
  44. Hibbs,J. B.Jr,Taintor,R. R.,Vavrin,Z. &Rachlin,E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule.Biochem. Biophys. Res. Commun. 157, 87–94.PubMedGoogle Scholar
  45. Hibbs,J. B.Jr,Taintor,R. R.,Vavrin,Z.,Granger,D. L.,Drapier,J-C.,Amber,I. J. &Lancaster,J. R.Jr. (1990) Synthesis of nitric oxide from a terminal guanidino nitrogen atom ofl-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. InNitric Oxide from l-arginine: a Bioregulatory System (edited byMoncada,S. &Higgs,E. A.), pp. 189–223. Amsterdam: Elsevier.Google Scholar
  46. Hogg,N.,Darley-Usmar,V. M.,Wilson,T. &Moncada,S. (1992) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide.Biochem. J. 281, 419–24.PubMedGoogle Scholar
  47. Hughes,S. R.,Williams,T. J. &Brain,S. D. (1990) Evidence that endogenous nitric oxide modulates oedema formation induced by substance P.Eur. J. Pharmacol 191, 481–4.CrossRefPubMedGoogle Scholar
  48. Hutcheson,I. R.,Whittle,B. J. R. &Boughton-Smith,N. K. (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat.Br. J. Pharmacol. 101, 815–20.PubMedGoogle Scholar
  49. Hutchinson,P. J. A.,Palmer,R. M. J. &Moncada,S. (1987) Comparative pharmacology of EDRF and nitric oxide on vascular strips.Eur. J. Pharmacol. 141, 445–51.CrossRefPubMedGoogle Scholar
  50. Ialenti,A.,Lanaro,A.,Moncada,S. &DiRosa,M. (1992) Modulation of acute inflammation by endogenous nitric oxide.Eur. J. Pharmacol. 211, 177–82.CrossRefPubMedGoogle Scholar
  51. Ignarro,L. J.,Lippton,H.,Edwards,J. C.,Baricos,W. H.,Hyman,A. L.,Kadowitz,P. J. &Gruetter,C. A. (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates.J. Phamacol. Exp. Ther. 218, 739–49.Google Scholar
  52. Ignarro,L. J.,Buga,G. M.,Wood,K. S.,Byrns,R. E. &Chaudhuri,G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc. Natl Acad. Sci. USA 84, 9265–9.PubMedGoogle Scholar
  53. Ishii,K. B.,Chang,B.,Kerwin,J. F.Jr.,Huang,Z-J. &Murad,F. (1990) Nω-Nitro-l-arginine: a potent inhibitor of endothelium-derived relaxing factor formation.Eur. J. Pharmacol. 176, 219–23.PubMedGoogle Scholar
  54. Kelm,M.,Feelisch,M.,Spahr,R.,Piper,H-M.,Noack,E. &Schrader,J. (1988) Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells.Biochem. Biophys. Res. Commun. 154, 236–44.CrossRefPubMedGoogle Scholar
  55. Khan,M. T. &Furchgott,R. F. (1987) Additional evidence that endothelium-derived relaxing factor is nitric oxide. InPharmacology (edited byRand,M. J. &Raper,C.), pp. 341–4. New York: Elsevier.Google Scholar
  56. Kilbourn,R. G.,Gross,S. S.,Jubran,A.,Adams,J.,Griffith,O. W.,Levi,R. &Lodato,R. F. (1990a) NG-methyl-l-arginine inhibits tumor necrosis factor-induced hypotension: implication for the involvement of nitric oxide.Proc. Natl Acad. Sci. USA 87, 3629–32.Google Scholar
  57. Kilbourn,R. G.,Jubran,A. N.,Gross,S. S.,Griffith,O. W.,Levi,R.,Adams,J. &Lodato,R. F. (1990b) Reversal of endotoxin-mediated shock by NG-methyl-l-arginine, an inhibitor of nitric oxide synthesis.Biochem. Biophys. Res. Commun. 172, 1132–8.CrossRefGoogle Scholar
  58. Knowles,R. G.,Palacios,M.,Palmer,R. M. J. &Moncada,S. (1989) Formation of nitric oxide froml-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase.Proc. Natl Acad. Sci. USA 86, 5159–32.PubMedGoogle Scholar
  59. Knowles,R. G.,Merrett,M.,Salter,N. &Moncada,S. (1990a) Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat.Biochem. J. 270, 833–6.Google Scholar
  60. Knowles,R. G.,Salter,M.,Brooks,S. L. &Moncada,S. (1990b) Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat.Biochem. Biophys. Res. Commun. 172, 1042–8.CrossRefGoogle Scholar
  61. Kubes,P. (1992) Nitric oxide modulates epithelial permeability in the feline small intestine.Am. J. Physiol. 262, G1138–42.PubMedGoogle Scholar
  62. Lamas,S.,Marsden,P. A.,LiG. K.,Tempst,P. &Michel,T. (1992) Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform.Proc. Natl Acad. Sci. USA 89, 6348–52.PubMedGoogle Scholar
  63. Lambert,L. E.,Whitten,J. P.,Baron,B. M.,Cheng,H. C.,Doherty,N. S. &Mcdonald,I. A. (1991) Nitric oxide synthesis in the CNS, endothelium and macrophages differs in its sensitivity to inhibition by arginine analogues.Life Sci. 48, 69–75.CrossRefPubMedGoogle Scholar
  64. Laszlo,F.,Evans,S. M. &Whittle,B. J. R. (1995) Aminoguanidine inhibits both constitutive and inducible nitric oxide synthase isoforms in rat intestinal microvasculature in vivo.Eur. J. Pharmacol. 272, 169–75.CrossRefPubMedGoogle Scholar
  65. Laszlo,F.,Whittle,B. J. R. &Moncada,S. (1994) Timedependent enhancement or inhibition of endotoxininduced vascular injury in rat intestine by nitric oxide synthase inhibitors.Br. J. Pharmacol. 111, 1309–15.PubMedGoogle Scholar
  66. Leone,A. M.,Palmer,R. M. J.,Knowles,R. G.,Francis,P. L.,Ashton,D. S. &Moncada,S. (1991) Constitutive and inducible nitric oxide synthases arel-arginine NG-CG-dioxygenases.J. Biol. Chem. 266, 23 790–5.Google Scholar
  67. Li,C. G. &Rand,M. J. (1989) Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle.Clin. Exp. Pharmacol Physiol. 16, 933–8.PubMedGoogle Scholar
  68. Liew,F. Y.,Millott,S.,Parkinson,C.,Palmer,R. M. J. &MoncadaS. (1990) Macrophage killing ofLeishmania parasitein vivo is mediated by nitric oxide froml-arginine.J. Immunol. 144, 4794–7.PubMedGoogle Scholar
  69. Lowenstein,C. J.,Glatt,C. S.,Bredt,D. S. &Snyder,S. H. (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme.Proc. Natl Acad. Sci USA 89, 6711–5.PubMedGoogle Scholar
  70. McCall,T. B.,Boughton-Smith,N. K.,Palmer,R. M. J.,Whittle,B. J. R. &Moncada,S. (1989) Synthesis of nitric oxide froml-arginine by neutrophils. Release and interaction with superoxide anion.Biochem J. 261, 293–6.PubMedGoogle Scholar
  71. McCall,T.,Palmer,R. M. J.,Boughton-Smith,N.,Whittle,B. J. R. &Moncada,S. (1990) Thel-arginine: nitric oxide pathway in neutrophils. InNitric Oxide from l-arginine: a Bioregulatory System (edited byMoncada,S. &Higgs,E. A.), pp. 257–65. Amsterdam: Elsevier.Google Scholar
  72. McCall,T. B.,Feelisch,M.,Palmer,R. M. J. &Moncada,S. (1991a) Identification ofN-iminoethyl-l-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells.Br. J. Pharmacol. 102, 234–8.Google Scholar
  73. McCall,T. B.,Palmer,R. M. J. &Moncada,S. (1991b) Inducation of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone.Eur. J. Immunol. 21, 2523–7.Google Scholar
  74. Marletta,M. A.,Yoon,P. S.,Iyengar,R.,Leaf,C. D. &Wishnok,J. S. (1988) Macrophage oxidation ofl-arginine to nitrite and nitrate: nitric oxide is an intermediate.Biochemistry 27, 8706–11.CrossRefPubMedGoogle Scholar
  75. Martin,W.,Smith,J. A. &White,D. G. (1986) The mechanisms by which haemoglobin inhibits the relaxation of rabbit aorta induced by nitrovasodilators, nitric oxide, or bovine retractor penis inhibitory factor.Br. J. Pharmacol. 89, 563–71.PubMedGoogle Scholar
  76. Middleton,S. J.,Shorthouse,M. &Hunter,J. O. (1993) Increased nitric oxide synthesis in ulcerative colitis.Lancet 341, 465–6.CrossRefPubMedGoogle Scholar
  77. Miller,M. J. S.,Sadowska-Krowicka,H.,Chotinaruemol,S.,Kakkis,J. L. &Clark,D. A. (1993) Amelioration of chronic ileitis by nitric oxide synthase inhibition.J. Pharm. Exp. Therap. 264, 11–6.Google Scholar
  78. Moncada,S.,Palmer,R. M. J. &Higgs,E. A. (1991) Nitric oxide: physiology, pathophysiology and pharmacology.Pharmacol. Rev. 43, 109–42.PubMedGoogle Scholar
  79. Moore,P. K.,Al-Swayeh,O. A.,Chong,N. W. S.,Evans,R. A. &Gibson,A. (1990) L-NG-nitro arginine (L-NOARG) a novell-arginine-reversible inhibitor of endothelium-dependent vasodilation in vitro.Br. J. Pharmacol. 99, 408–12.PubMedGoogle Scholar
  80. Mulsch,A. &Busse,R. (1990) NG-nitro-l-arginine (N5-[imino (nitro-amino)methyl]-l-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis froml-arginine.Naunyn Schmiedebergs Arch. Pharmacol. 341, 143–7.PubMedGoogle Scholar
  81. Murad,F.,Mittal,A. K.,Arnold,W. P.,Katsuki,S. &Kimujra,H. (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by hemoglobin and myoglobin.Adv. Cyclic Nucleotide Res. 9, 145–58.PubMedGoogle Scholar
  82. Nakane,M.,Schmidt,H. H.,Pollock,J. S.,Forstermann,U. &Murad,F. (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle.FEBS Lett. 316, 175–80.CrossRefPubMedGoogle Scholar
  83. Nava,E.,Palmer,R. M. J. &Moncada,S. (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial?Lancet 338, 1555–7.CrossRefPubMedGoogle Scholar
  84. Nishida,K.,Harrison,D. G.,Navas,J. P.,Fisher,M.,Dockery,S. P.,Uematsu,M.,Nerem,R. M.,Alexander,R. W. &Murphy,T. J. (1992) Molecular cloning and characterization of the constitutive bovine aortic endotheial cell nitric oxide synthase.J. Clin. Invest. 90, 2092–6.PubMedGoogle Scholar
  85. Nunokawa,Y.,Ishida,N. &Tanaka,S. (1993) Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells.Biochem. Biophys. Res. Commun. 191, 89–94.CrossRefPubMedGoogle Scholar
  86. Palacios,M.,Knowles,R. G.,Palmer,R. M. J. &Moncada,S. (1989) Nitric oxide froml-arginine stimulates the soluble guanylate cyclase in adrenal glands.Biochem. Biophys. Res. Commun. 165, 802–9.CrossRefPubMedGoogle Scholar
  87. Palmer,R. M. J. &Moncada,S. (1989) A novel citrullineforming enzyme implicated in the formation of nitric oxide by vascular endothelial cells.Biochem. Biophys. Res. Commun. 158, 348–52.CrossRefPubMedGoogle Scholar
  88. Palmer,R. M. J.,Ferrige,A. G. &Moncada,S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature 327, 524–6.CrossRefPubMedGoogle Scholar
  89. Palmer,R. M. J.,Ashton,D. S. &Moncada,S. (1988a) Vascular endothelial cells synthesise nitric oxide froml-arginine.Nature 333, 664–6.CrossRefGoogle Scholar
  90. Palmer,R. M. J.,Rees,D. D.,Ashton,D. S. &Moncada,S. (1988b)l-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation.Biochem. Biophys. Res. Commun. 153, 1251–6.CrossRefGoogle Scholar
  91. Petros,A.,Bennett,D. &Vallance,P. (1991) Effect of nitric oxide on hypotension in patients with septic shock.Lancet 338, 1557–8.CrossRefPubMedGoogle Scholar
  92. Pique,J. M.,Whittle,B. J. R. &Esplugues,J. V. (1989) The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation.Eur. J. Pharmacol. 174, 293–6.CrossRefPubMedGoogle Scholar
  93. Pique,J. M.,Esplugues,J. V. &Whittle,B. J. R. (1992) Endogenous nitric oxide as a mediator of gastric mucosal vasodilatation during acid secretion.Gastroenterology 102, 168–74.PubMedGoogle Scholar
  94. Pizcueta,J. M.,Pique,J. M.,Bosch,J.,Whittle,B. J. R. &Moncada,S. (1992) Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension.Br. J. Pharmacol. 105, 184–90.PubMedGoogle Scholar
  95. Radi,R.,Beckman,J. S.,Bush,K. M.,Freeman,BA. (1991) Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide.Arch. Biochem. Biophys. 288, 481–7.PubMedGoogle Scholar
  96. Radomski,M. W.,Palmer,R. M. J. &Moncada,S. (1987a) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide.Br. J. Pharmacol. 92, 639–46.Google Scholar
  97. Radomski,M. W.,Palmer,R. M. J.,Moncada,S. (1987b) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.Lancet ii, 1057–8.Google Scholar
  98. Radomski,M. W.,Jenkins,D. C.,Holmes,L. &Moncada,S. (1991) Human colorectal adenocarcinoma cells: Differential nitric oxide synthesis determines their ability to aggregate platelets.Cancer Res. 51, 6073–8.PubMedGoogle Scholar
  99. Ramagopal,M. V. &Leighton,H. J. (1989) Effect of NG-monomethyl-l-arginine on field stimulation-induced decreases in cytosolic Ca2+ levels and relaxations in the rat anococcygeus muscle.Eur. J. Pharmacol. 174, 297–9.CrossRefPubMedGoogle Scholar
  100. Rees,D. D.,Palmer,R. M. J. &Moncada,S. (1989a) Role of endothelium-derived nitric oxide in the regulation of blood pressure.Proc. Natl Acad. Sci. USA 86, 3375–8.Google Scholar
  101. Rees,D. D.,Palmer,R. M. J.,Hodson,H. F. &Moncada,S. (1989b) A specific inhibitor of nitric oxide formation froml-arginine attenuates endothelium-dependent relaxation.Br. J. Pharmacol. 96, 418–24.Google Scholar
  102. Rees,D. D.,Palmer,R. M. J.,Schulz,R.,Hodson,H. F. &Moncada,S. (1990a) Characterisation of three inhibitors of endothelial nitric oxide synthases in vitro and in vivo.Br. J. Pharmacol. 101, 746–52.PubMedGoogle Scholar
  103. Rees,D. D.,Cellek,C.,Palmer,R. M. J. &Moncada,S. (1990b) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock.Biochem. Biophys. Res. Commun. 173, 541–7.CrossRefGoogle Scholar
  104. Rimele,T. J.,Sturm,R. J.,Adams,L. M.,Henry,D. E.,Heaslip,R. J.,Weichman,B. M. &Grimes,D. (1988) Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor.J. Pharmacol. Exp. Ther. 245, 102–11.PubMedGoogle Scholar
  105. Roediger,W. E.,Lawson,M. J.,Nance,S. H. &Radcliffe,B. C. (1986) Detectable colonic nitrite levels in inflammatory bowel disease - mucosal or bacterial malfunction?Digestion 35, 199–204.PubMedGoogle Scholar
  106. Sakuma,I.,Stuehr,D. J.,Gross,S. S.,Nathan,C. &Levi,R. (1988) Identification of arginine as a precursor of endothelium-derived relaxing factor (EDRF).Proc. Natl Acad. Sci. USA 85, 8664–7.PubMedGoogle Scholar
  107. Salter,M.,Knowles,R. G. &Moncada,S. (1991) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases.FEBS Lett. 291, 145–9.CrossRefPubMedGoogle Scholar
  108. Salvemini,D.,DeNucci,G.,Gryglewski,R. J. &Vane,J. R. (1989) Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor.Proc. Natl Acad. Sci. USA 86, 6328–32.PubMedGoogle Scholar
  109. Salvemini,D.,Masini,E.,Anggard,E.,Mannaioni,P. F. &Vane,J. (1990) Synthesis of a nitric oxide-like factor froml-arginine by rat serosal mast cells: stimulation of guanylate cyclase and inhibition of platelet aggregation.Biochem. Biophys. Res. Commun. 169, 596–601.CrossRefPubMedGoogle Scholar
  110. Sanders,K. M. &Ward,S. M. (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission.Am. J. Physiol. 262, G379–92.PubMedGoogle Scholar
  111. Schmidt,H. H. H. W.,Nau,H.,Wittfoht,W.,Gerlach,J.,Prescher,K. E.,Klein,M. M.,Niroomand,F. &Bohme,E. (1988) Arginine is a physiological precursor of endothelium-derived nitric oxide.Eur. J. Pharmacol. 154, 213–6.CrossRefPubMedGoogle Scholar
  112. Schmidt,H. H. H. W.,Seifert,R. &Bohme,E. (1989) Formation and release of nitric oxide from human neutrophil and HL-60 cells induced by chemotactic peptide, platelet activating factor and leukotriene B4.FEBS Lett. 244, 357–60.CrossRefPubMedGoogle Scholar
  113. Shikano,K.,Ohlstein,E. H. &Berkowitz,B. A. (1987) Differential selectivity of endothelium-derived relaxing factor and nitric oxide in smooth muscle.Br. J. Pharmacol. 92, 483–5.PubMedGoogle Scholar
  114. Stuehr,D. J. &Marletta,M. A. (1987) Synthesis of nitrite and nitrate in murine macrophage cell lines.Cancer Res. 47, 5590–4.PubMedGoogle Scholar
  115. Stuehr,D.,Gross,S.,Sakuma,I.,Levi,R. &Nathan,C. (1989) Activated murine macrophages secrete a metabolite of arginine with thebioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide.J. Exp. Med. 169, 1011–20.PubMedGoogle Scholar
  116. Tayeh,M. A. &Marietta,M. A. (1989) Macrophage oxidation ofl-arginine to nitric oxide, nitrite and nitrate. Tetrahyrobiopterin is required as a co-factor.J. Biol. Chem. 264, 19 654–8.Google Scholar
  117. Tepperman,B. L.,Brown,J. F. &Whittle,B. J. R. (1993) Nitric oxide synthase induction and intestinal epithelial cell viability in rats.Am. J. Physiol. 265, G214–8.PubMedGoogle Scholar
  118. Umans,J. G. &Samsel,R. W. (1992)l-canavanine selectively augments contraction in aortas from endotoxemic rats.Eur. J. Pharmacol. 210, 343–6.CrossRefPubMedGoogle Scholar
  119. Vallance,P. &Moncada,S. (1991) Hypothesis: induction of nitric oxide synthase in the vasculature underlies the hyperdynamic circulation of cirrhosis.Lancet 337, 776–8.CrossRefPubMedGoogle Scholar
  120. Vallance,P.,Collier,J. &Moncada,S. (1989) Effects of endothelium-derived nitric oxide on peripheral arteriole tone in man.Lancet ii, 997–1000.Google Scholar
  121. Wagner,D. A.,Young,V. R. &Tannenbaum,S. R. (1983) Mammalian nitrate biosynthesis: incorporation of15NH3 into nitrate is enhanced by endotoxin treatment.Proc. Natl Acad. Sci. USA 80, 4518–21.PubMedGoogle Scholar
  122. Walder,C. E.,Thimermann,C. &Vane,J. R. (1990) Endothelium-derived relaxing factor participates in the increased blood flow in the response to pentagastrin in the rat stomach mucosa.Proc. R. Soc. London. (B)241, 195–200.Google Scholar
  123. Warren.J. B.,Coughlan,M. L. &Williams,T. J. (1992) Endotoxin-induced vasodilatation in anaesthetized rat skin involves nitric oxide and prostaglandin synthesis.Br. J. Pharmacol. 106, 953–7.PubMedGoogle Scholar
  124. Whittle,B. J. R.,Lopez-Belmonte,J. &Rees,D. D. (1989) Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation.Br. J. Pharmacol. 98, 646–52.PubMedGoogle Scholar
  125. Wright,D. E.,Mulsch,A.,Busse,R. &Osswald,H. (1989) Generation of nitric oxide by human neutrophils.Biochem. Biophys. Res. Commun. 160, 813–9.CrossRefPubMedGoogle Scholar
  126. Wright,C. E.,Rees,D. D. &Moncada,S. (1992) Protective and pathological roles of nitric oxide in endotoxin shock.Cardiovasc. Res. 26, 48–57.PubMedGoogle Scholar
  127. Xie,Q.,Cho,H. J.,Calaycay,J.,Mumford,R. A.,Swiderek,K. M.,Lee,T. D.,Ding,A.,Troso,T. &Nathan,C. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science 256, 225–8.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Brendan J. R. Whittle
    • 1
  1. 1.Wellcome Foundation Limited, Langley CourtBeckenhamUK

Personalised recommendations