Skip to main content

Nitric Oxide and Cardiovascular Health

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Abstract

Nitric oxide (NO) is a diffusible free radical and universal messenger that is produced from L-arginine by three different isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the regulation of variety of physiological functions including myocardial contractility, vascular tone, blood pressure, cell growth, proliferation and platelet aggregation. Most of the effects of NO are mediated through the activation of soluble guanylate cyclase–cGMP system, however, cGMP-independent pathways have also been shown to be responsible in mediating its effects. The levels of NO are regulated by several factors and cofactors required for the activation of NOS, however, reduced bioavailability of these factors results in the decreased levels of NO and thereby endothelial dysfunction leading to the pathogenesis of cardiovascular diseases including hypertension, diabetes, atherosclerosis etc. This review will focus on the role of NO in physiology and pathophysiology of cardiovascular system including vascular remodeling, hypertension and the underlying molecular mechanisms contributing to these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zordoky BN, Robertson IM, Dyck JR (2015) Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta 1852(6):1155–1177

    Article  CAS  PubMed  Google Scholar 

  2. Pokharel S, Sharma UC, Pinto YM (2003) Left ventricular hypertrophy: virtuous intentions, malign consequences. Int J Biochem Cell Biol 35(6):802–806

    Article  CAS  PubMed  Google Scholar 

  3. Reaven GM, Laws A (1994) Insulin resistance, compensatory hyperinsulinaemia, and coronary heart disease. Diabetologia 37(9):948–952

    Article  CAS  PubMed  Google Scholar 

  4. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–37, 37a–37d

    Google Scholar 

  5. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333(6174):664–666

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99(1):293–305

    Article  CAS  PubMed  Google Scholar 

  8. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418(3):291–296

    Article  CAS  PubMed  Google Scholar 

  9. Liu VW, Huang PL (2008) Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 77(1):19–29

    CAS  PubMed  Google Scholar 

  10. Merrill JE, Murphy SP, Mitrovic B, Mackenzie-Graham A, Dopp JC, Ding M et al (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J Neurosci Res 48(4):372–384

    Article  CAS  PubMed  Google Scholar 

  11. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689

    Article  CAS  PubMed  Google Scholar 

  12. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6(12):3051–3064

    Article  CAS  PubMed  Google Scholar 

  13. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605

    Article  CAS  PubMed  Google Scholar 

  14. Busconi L, Michel T (1993) Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem 268(12):8410–3

    Google Scholar 

  15. Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78(6):927–930

    Article  CAS  PubMed  Google Scholar 

  16. Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide 23(1):1–11

    Article  CAS  PubMed  Google Scholar 

  17. Zhang YH, Casadei B (2012) Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 52(2):341–350

    Article  CAS  PubMed  Google Scholar 

  18. Ignarro LJ (1990) Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16(5):477–83

    Google Scholar 

  19. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM (2005) Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia 48(9):1933–1940

    Article  CAS  PubMed  Google Scholar 

  20. Vallance P, Leiper J (2004) Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 24(6):1023–1030

    Article  CAS  PubMed  Google Scholar 

  21. Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91(1):139–144

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita H, Milstien S, Wambi C, Katusic ZS (1997) Inhibition of tetrahydrobiopterin biosynthesis impairs endothelium-dependent relaxations in canine basilar artery. Am J Physiol 273(2 Pt 2):H718–H724

    CAS  PubMed  Google Scholar 

  23. Rodriguez S, Richert L, Berthelot A (2000) Increased arginase activity in aorta of mineralocorticoid-salt hypertensive rats. Clin Exp Hypertens 22(1):75–85

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Hein TW, Wang W, Miller MW, Fossum TW, McDonald MM et al (2004) Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension 44(6):935–943

    Article  CAS  PubMed  Google Scholar 

  25. Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE (1998) Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 438(3):161–164

    Article  CAS  PubMed  Google Scholar 

  26. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278(25):22546–22554

    Article  CAS  PubMed  Google Scholar 

  27. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  28. Madiraju P, Hossain E, Anand-Srivastava MB (2018) Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol Cell Biochem 448(1–2):77–89

    Article  CAS  PubMed  Google Scholar 

  29. Hossain E, Sarkar O, Li Y, Anand-Srivastava MB (2018) Inhibition of overexpression of Gialpha proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR. Physiol Rep 6(6):e13658

    Article  PubMed  PubMed Central  Google Scholar 

  30. Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N (2012) Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol 52(1):83–92

    Article  CAS  PubMed  Google Scholar 

  31. Heller R, Munscher-Paulig F, Grabner R, Till U (1999) L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. J Biol Chem 274(12):8254–8260

    Article  CAS  PubMed  Google Scholar 

  32. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276(1):40–47

    Article  CAS  PubMed  Google Scholar 

  33. Ignjatovic T, Stanisavljevic S, Brovkovych V, Skidgel RA, Erdos EG (2004) Kinin B1 receptors stimulate nitric oxide production in endothelial cells: signaling pathways activated by angiotensin I-converting enzyme inhibitors and peptide ligands. Mol Pharmacol 66(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  34. Mason RP, Jacob RF, Kubant R, Jacoby A, Louka F, Corbalan JJ et al (2012) Effects of angiotensin receptor blockers on endothelial nitric oxide release: the role of eNOS variants. Br J Clin Pharmacol 74(1):141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nour-Eldine W, Ghantous CM, Zibara K, Dib L, Issaa H, Itani HA et al (2016) Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway. Front Pharmacol 7:86

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K et al (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106(13):1652–1658

    Article  CAS  PubMed  Google Scholar 

  37. Wallerath T, Poleo D, Li H, Forstermann U (2003) Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 41(3):471–478

    Article  CAS  PubMed  Google Scholar 

  38. Wiemer G, Linz W, Hatrik S, Scholkens BA, Malinski T (1997) Angiotensin-converting enzyme inhibition alters nitric oxide and superoxide release in normotensive and hypertensive rats. Hypertension 30(5):1183–1190

    Article  CAS  PubMed  Google Scholar 

  39. Huang A, Vita JA, Venema RC, Keaney JF Jr (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275(23):17399–17406

    Article  CAS  PubMed  Google Scholar 

  40. Griendling KK, Alexander RW (1997) Oxidative stress and cardiovascular disease. Circulation 96(10):3264–3265

    CAS  PubMed  Google Scholar 

  41. Baradaran A, Nasri H, Rafieian-Kopaei M (2014) Oxidative stress and hypertension: possibility of hypertension therapy with antioxidants. J Res Med Sci 19(4):358–367

    PubMed  PubMed Central  Google Scholar 

  42. Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11(9)

    Google Scholar 

  43. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–H2190

    Article  CAS  PubMed  Google Scholar 

  44. Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110(1):87–94

    Article  CAS  PubMed  Google Scholar 

  45. Bahnson ES, Koo N, Cantu-Medellin N, Tsui AY, Havelka GE, Vercammen JM et al (2015) Nitric oxide inhibits neointimal hyperplasia following vascular injury via differential, cell-specific modulation of SOD-1 in the arterial wall. Nitric Oxide 44:8–17

    Article  CAS  PubMed  Google Scholar 

  46. Sarkar O, Li Y, Anand-Srivastava MB (2017) Nitric oxide attenuates overexpression of Gialpha proteins in vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling. PLoS ONE 12(7):e0179301

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L (2018) Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 175(8):1279–1292

    Article  CAS  PubMed  Google Scholar 

  48. Atef ME, Anand-Srivastava MB (2016) Oxidative stress contributes to the enhanced expression of Gqalpha/PLCbeta1 proteins and hypertrophy of VSMC from SHR: role of growth factor receptor transactivation. Am J Physiol Heart Circ Physiol 310(5):H608–H618

    Article  PubMed  Google Scholar 

  49. Gomez Sandoval YH, Anand-Srivastava MB (2011) Enhanced levels of endogenous endothelin-1 contribute to the over expression of Gialpha protein in vascular smooth muscle cells from SHR: role of growth factor receptor activation. Cell Signal 23(2):354–362

    Article  CAS  PubMed  Google Scholar 

  50. Lappas G, Daou GB, Anand-Srivastava MB (2005) Oxidative stress contributes to the enhanced expression of Gialpha proteins and adenylyl cyclase signaling in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 23(12):2251–2261

    Article  CAS  PubMed  Google Scholar 

  51. Hobbs AJ (1997) Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol Sci 18(12):484–491

    Article  CAS  PubMed  Google Scholar 

  52. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS (1982) Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta 718(1):49–59.

    Google Scholar 

  53. Krumenacker JS, Hanafy KA, Murad F (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62(6):505–515

    Article  CAS  PubMed  Google Scholar 

  54. Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F (2003) Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 93(10):907–916

    Article  CAS  PubMed  Google Scholar 

  55. Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F (1999) Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 135:105–149

    Article  CAS  PubMed  Google Scholar 

  56. Burley DS, Ferdinandy P, Baxter GF (2007) Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 152(6):855–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lincoln TM, Wu X, Sellak H, Dey N, Choi CS (2006) Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci 11:356–367

    Article  CAS  PubMed  Google Scholar 

  58. Wang S, Li Y (2009) Expression of constitutively active cGMP-dependent protein kinase inhibits glucose-induced vascular smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 297(6):H2075–H2083

    Article  CAS  PubMed  Google Scholar 

  59. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274(16):10927–10935

    Article  CAS  PubMed  Google Scholar 

  60. Jahn H, Nastainczyk W, Rohrkasten A, Schneider T, Hofmann F (1988) Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur J Biochem 178(2):535–542

    Article  CAS  PubMed  Google Scholar 

  61. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(Pt 2):457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414

    CAS  PubMed  Google Scholar 

  63. Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB (1998) Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway. Mol Cell Biol 18(12):6983–6994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bassil M, Anand-Srivastava MB (2006) Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med 41(7):1162–1173

    Article  CAS  PubMed  Google Scholar 

  65. Kibbe MR, Nie S, Seol DW, Kovesdi I, Lizonova A, Makaroun M et al (2000) Nitric oxide prevents p21 degradation with the ubiquitin-proteasome pathway in vascular smooth muscle cells. J Vasc Surg 31(2):364–374

    Article  CAS  PubMed  Google Scholar 

  66. Stotz WH, Li D, Johns RA (2004) Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells. J Vasc Res 41(3):211–219

    Article  CAS  PubMed  Google Scholar 

  67. Arejian M, Li Y, Anand-Srivastava MB (2009) Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK. Am J Physiol Heart Circ Physiol 296(6):H1859–H1867

    Article  CAS  PubMed  Google Scholar 

  68. Bian K, Ke Y, Kamisaki Y, Murad F (2006) Proteomic modification by nitric oxide. J Pharmacol Sci 101(4):271–279

    Article  CAS  PubMed  Google Scholar 

  69. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267(5 Pt 1):C1405–C1413

    Article  CAS  PubMed  Google Scholar 

  70. Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106(4):633–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schulman IH, Hare JM (2012) Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta 1820(6):752–762

    Article  CAS  PubMed  Google Scholar 

  72. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jia M, Mateoiu C, Souchelnytskyi S (2011) Protein tyrosine nitration in the cell cycle. Biochem Biophys Res Commun 413(2):270–276

    Article  CAS  PubMed  Google Scholar 

  74. Batista WL, Ogata FT, Curcio MF, Miguel RB, Arai RJ, Matsuo AL et al (2013) S-nitrosoglutathione and endothelial nitric oxide synthase-derived nitric oxide regulate compartmentalized ras S-nitrosylation and stimulate cell proliferation. Antioxid Redox Signal 18(3):221–238

    Article  CAS  PubMed  Google Scholar 

  75. Gow AJ, Duran D, Malcolm S, Ischiropoulos H (1996) Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 385(1–2):63–66

    Article  CAS  PubMed  Google Scholar 

  76. Hellberg CB, Boggs SE, Lapetina EG (1998) Phosphatidylinositol 3-kinase is a target for protein tyrosine nitration. Biochem Biophys Res Commun 252(2):313–317

    Article  CAS  PubMed  Google Scholar 

  77. Sun J, Steenbergen C, Murphy E (2006) S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8(9–10):1693–1705

    Article  CAS  PubMed  Google Scholar 

  78. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850–853

    Article  CAS  PubMed  Google Scholar 

  79. Hadrava V, Kruppa U, Russo RC, Lacourciere Y, Tremblay J, Hamet P (1991) Vascular smooth muscle cell proliferation and its therapeutic modulation in hypertension. Am Heart J 122(4 Pt 2):1198–1203

    Article  CAS  PubMed  Google Scholar 

  80. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2):581–587

    Article  CAS  PubMed  Google Scholar 

  81. Touyz RM (2005) Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 90(4):449–455

    Article  CAS  PubMed  Google Scholar 

  82. Intengan HD, Deng LY, Li JS, Schiffrin EL (1999) Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension 33(1 Pt 2):569–574

    Article  CAS  PubMed  Google Scholar 

  83. Ross R, Glomset J, Kariya B, Harker L (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro 71(4):1207–1210

    Google Scholar 

  84. Raines EWJ (2004) PDGF and cardiovascular disease 15(4):237–254

    CAS  Google Scholar 

  85. Inagami T, Eguchi S (2000) Angiotensin II-mediated vascular smooth muscle cell growth signaling 33(6):619–624

    Google Scholar 

  86. Li Y, Lévesque L-O, Anand-Srivastava MB (2010) Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyper proliferation of vascular smooth muscle cells of SHR. Am J Physiol 299(6):H1959–H1967

    CAS  Google Scholar 

  87. Atef ME, Anand-Srivastava MB (2016) Oxidative stress contributes to the enhanced expression of Gqα/PLCβ1 proteins and hypertrophy of VSMC from SHR: role of growth factor receptor transactivation. Am J Physiol Heart Circ Physiol 310(5):H608–H618

    Article  PubMed  Google Scholar 

  88. Gomez Y-H, Anand-Srivastava M (2010) Enhanced levels of endogenous endothelin-1 contribute to the over expression of Giα protein in vascular smooth muscle cells from SHR: role of growth factor receptor activation. Cell Signal 23:354–362

    Article  Google Scholar 

  89. Almajdoob S, Hossain E, Anand-Srivastava MBJVp (2018) Resveratrol attenuates hyper proliferation of vascular smooth muscle cells from spontaneously hypertensive rats: role of ROS and ROS-mediated cell signaling 101:48–56

    Google Scholar 

  90. Hashim S, Li Y, Anand-Srivastava MB (2006) Small cytoplasmic domain peptides of natriuretic peptide receptor-C attenuate cell proliferation through Gialpha protein/MAP kinase/PI3-kinase/AKT pathways. Am J Physiol Heart Circ Physiol 291(6):H3144–H3153

    Article  CAS  PubMed  Google Scholar 

  91. Gomez Sandoval YH, Levesque LO, Anand-Srivastava MB (2009) Contribution of epidermal growth factor receptor transactivation in angiotensin II-induced enhanced expression of Gi protein and proliferation in A10 vascular smooth muscle cells. Can J Physiol Pharmacol 87(12):1037–1045

    Article  CAS  PubMed  Google Scholar 

  92. Gomez Sandoval YH, Levesque LO, Li Y, Anand-Srivastava MB (2013) Role of epidermal growth factor receptor transactivation in endothelin-1-induced enhanced expression of Gi protein and proliferation in A10 vascular smooth muscle cells. Can J Physiol Pharmacol 91(3):221–227

    Article  CAS  PubMed  Google Scholar 

  93. Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H et al (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273(15):8890–8896

    Article  CAS  PubMed  Google Scholar 

  94. Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S et al (2005) Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol 25(9):1831–1836

    Article  CAS  PubMed  Google Scholar 

  95. Atef ME, Anand-Srivastava MB (2014) Enhanced expression of Gqalpha and PLC-beta1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1. Am J Physiol Cell Physiol 307(1):C97-106

    Article  CAS  PubMed  Google Scholar 

  96. Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Buhler FR (1990) Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regul 1(9):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kanse SM, Takahashi K, Warren JB, Perera T, Porta M, Ghatei M et al (1991) Production of endothelin by vascular smooth muscle cells. J Cardiovasc Pharmacol 17(Suppl 7):S113–S116

    Article  CAS  PubMed  Google Scholar 

  98. Kubo A, Fukuda N, Soma M, Izumi Y, Kanmatsuse K (1996) Inhibitory effect of an angiotensin II type 1 receptor antagonist on growth of vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 27(1):58–63

    Article  CAS  PubMed  Google Scholar 

  99. Lu MH, Chao CF, Tsai SH, Chen JY, Chang LT (2006) Autocrine effects of endothelin on in vitro proliferation of vascular smooth muscle cells from spontaneously hypertensive and normotensive rats. Clin Exp Hypertens 28(5):463–474

    Article  CAS  PubMed  Google Scholar 

  100. Hadrava V, Tremblay J, Hamet P (1989) Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension 13(6 Pt 1):589–597

    Article  CAS  PubMed  Google Scholar 

  101. Tanner FC, Greutert H, Barandier C, Frischknecht K, Luscher TF (2003) Different cell cycle regulation of vascular smooth muscle in genetic hypertension. Hypertension 42(2):184–188

    Article  CAS  PubMed  Google Scholar 

  102. Bou Daou G, Li Y, Anand-Srivastava MB (2016) Enhanced expression of Gialpha proteins contributes to the hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats via MAP kinase- and PI3 kinase-independent pathways. Can J Physiol Pharmacol 94(1):49–58

    Article  CAS  PubMed  Google Scholar 

  103. El Andalousi J, Li Y, Anand-Srivastava MB (2013) Natriuretic peptide receptor-C agonist attenuates the expression of cell cycle proteins and proliferation of vascular smooth muscle cells from spontaneously hypertensive rats: role of Gi proteins and MAPkinase/PI3kinase signaling. PLoS ONE 8(10):e76183

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li Y, Levesque LO, Anand-Srivastava MB (2010) Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 299(6):H1959–H1967

    Article  CAS  PubMed  Google Scholar 

  105. Rahali S, Li Y, Anand-Srivastava MB (2018) Contribution of oxidative stress and growth factor receptor transactivation in natriuretic peptide receptor C-mediated attenuation of hyperproliferation of vascular smooth muscle cells from SHR. PLoS ONE 13(1):e0191743

    Article  PubMed  PubMed Central  Google Scholar 

  106. Saito S, Frank GD, Mifune M, Ohba M, Utsunomiya H, Motley ED et al (2002) Ligand-independent trans-activation of the platelet-derived growth factor receptor by reactive oxygen species requires protein kinase C-delta and c-Src. J Biol Chem 277(47):44695–44700

    Article  CAS  PubMed  Google Scholar 

  107. Dubey RK (1994) Vasodilator-derived nitric oxide inhibits fetal calf serum- and angiotensin-II-induced growth of renal arteriolar smooth muscle cells. J Pharmacol Exp Ther 269(1):402–408

    CAS  PubMed  Google Scholar 

  108. Dubey RK, Jackson EK, Luscher TF (1995) Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors. J Clin Invest 96(1):141–9

    Google Scholar 

  109. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83(5):1774–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tsihlis ND, Oustwani CS, Vavra AK, Jiang Q, Keefer LK, Kibbe MR (2011) Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10. Cell Biochem Biophys 60(1–2):89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bahnson ES, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM et al (2016) Targeted nitric oxide delivery by supramolecular nanofibers for the prevention of restenosis after arterial injury. Antioxid Redox Signal 24(8):401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Suzuki H, Kimura K, Shirai H, Eguchi K, Higuchi S, Hinoki A et al (2009) Endothelial nitric oxide synthase inhibits G12/13 and rho-kinase activated by the angiotensin II type-1 receptor: implication in vascular migration. Arterioscler Thromb Vasc Biol 29(2):217–224

    Article  CAS  PubMed  Google Scholar 

  113. Sharma RV, Tan E, Fang S, Gurjar MV, Bhalla RC (1999) NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells. Am J Physiol 276(5):H1450–H1459

    CAS  PubMed  Google Scholar 

  114. Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Luscher TF (2000) Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 101(16):1982–1989

    Article  CAS  PubMed  Google Scholar 

  115. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J (1997) Induction of the cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1) by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem 272(15):10050–10057

    Article  CAS  PubMed  Google Scholar 

  116. Hossain E, Sarkar O, Li Y, Anand-Srivastava MB (2020) Sodium nitroprusside attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats through the inhibition of overexpression of AT1 receptor, cell cycle proteins, and c-Src/growth factor receptor signaling pathways. Can J Physiol Pharmacol 98(1):35–43

    Article  CAS  PubMed  Google Scholar 

  117. Yu SM, Hung LM, Lin CC (1997) cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation 95(5):1269–1277

    Article  CAS  PubMed  Google Scholar 

  118. Bouallegue A, Daou GB, Srivastava AK (2007) Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol 293(4):H2072–H2079

    Article  CAS  PubMed  Google Scholar 

  119. Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis. 2018;5(2).

    Google Scholar 

  120. Segura-Puimedon M, Mergia E, Al-Hasani J, Aherrahrou R, Stoelting S, Kremer F et al (2016) Proatherosclerotic effect of the alpha1-subunit of soluble guanylyl cyclase by promoting smooth muscle phenotypic switching. Am J Pathol 186(8):2220–2231

    Article  CAS  PubMed  Google Scholar 

  121. Maruhashi T, Noma K, Iwamoto Y, Iwamoto A, Oda N, Kajikawa M et al (2014) Critical role of exogenous nitric oxide in ROCK activity in vascular smooth muscle cells. PLoS ONE 9(10):e109017

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sarkar R, Meinberg EG, Stanley JC, Gordon D, Webb RC (1996) Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ Res 78(2):225–230

    Article  CAS  PubMed  Google Scholar 

  123. Gurjar MV, Sharma RV, Bhalla RC (1999) eNOS gene transfer inhibits smooth muscle cell migration and MMP-2 and MMP-9 activity. Arterioscler Thromb Vasc Biol 19(12):2871–2877

    Article  CAS  PubMed  Google Scholar 

  124. Largiader T, Eto M, Payeli SK, Greutert H, Viswambharan H, Lachat M et al (2008) Endothelial nitric oxide synthase gene transfer inhibits human smooth muscle cell migration via inhibition of Rho A. J Cardiovasc Pharmacol 52(4):369–374

    Article  CAS  PubMed  Google Scholar 

  125. McNamara DB, Bedi B, Aurora H, Tena L, Ignarro LJ, Kadowitz PJ et al (1993) L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun 193(1):291–296

    Article  CAS  PubMed  Google Scholar 

  126. Taguchi J, Abe J, Okazaki H, Takuwa Y, Kurokawa K (1993) L-arginine inhibits neointimal formation following balloon injury. Life Sci 53(23):PL387–PL392

    Google Scholar 

  127. Guo JP, Panday MM, Consigny PM, Lefer AM (1995) Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am J Physiol 269(3 Pt 2):H1122–H1131

    CAS  PubMed  Google Scholar 

  128. Kaul S, Cercek B, Rengstrom J, Xu XP, Molloy MD, Dimayuga P et al (2000) Polymeric-based perivascular delivery of a nitric oxide donor inhibits intimal thickening after balloon denudation arterial injury: role of nuclear factor-kappaB. J Am Coll Cardiol 35(2):493–501

    Article  CAS  PubMed  Google Scholar 

  129. Lee JS, Adrie C, Jacob HJ, Roberts JD Jr, Zapol WM, Bloch KD (1996) Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res 78(2):337–342

    Article  CAS  PubMed  Google Scholar 

  130. Schwarzacher SP, Lim TT, Wang B, Kernoff RS, Niebauer J, Cooke JP et al (1997) Local intramural delivery of L-arginine enhances nitric oxide generation and inhibits lesion formation after balloon angioplasty. Circulation 95(7):1863–1869

    Article  CAS  PubMed  Google Scholar 

  131. Fulton GJ, Davies MG, Barber L, Gray JL, Svendsen E, Hagen PO (1998) Local effects of nitric oxide supplementation and suppression in the development of intimal hyperplasia in experimental vein grafts. Eur J Vasc Endovasc Surg 15(4):279–289

    Article  CAS  PubMed  Google Scholar 

  132. Havelka GE, Moreira ES, Rodriguez MP, Tsihlis ND, Wang Z, Martinez J et al (2013) Nitric oxide delivery via a permeable balloon catheter inhibits neointimal growth after arterial injury. J Surg Res 180(1):35–42

    Article  CAS  PubMed  Google Scholar 

  133. Pearce CG, Najjar SF, Kapadia MR, Murar J, Eng J, Lyle B et al (2008) Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic Biol Med 44(1):73–81

    Article  CAS  PubMed  Google Scholar 

  134. Groves PH, Banning AP, Penny WJ, Newby AC, Cheadle HA, Lewis MJ (1995) The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty. Cardiovasc Res 30(1):87–96

    Article  CAS  PubMed  Google Scholar 

  135. Harnek J, Zoucas E, Sjuve R, Arner A, Ekblad E, Schou H et al (2003) Local infusion of the nitric oxide donor Sin-1 after angioplasty. Effects on intimal hyperplasia in porcine coronary arteries. Acta Radiol 44(4):395–402

    Google Scholar 

  136. Janssens S, Flaherty D, Nong Z, Varenne O, van Pelt N, Haustermans C et al (1998) Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 97(13):1274–1281

    Article  CAS  PubMed  Google Scholar 

  137. Kibbe MR, Tzeng E, Gleixner SL, Watkins SC, Kovesdi I, Lizonova A et al (2001) Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia. J Vasc Surg 34(1):156–165

    Article  CAS  PubMed  Google Scholar 

  138. Shears LL 2nd, Kibbe MR, Murdock AD, Billiar TR, Lizonova A, Kovesdi I et al (1998) Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 187(3):295–306

    Article  PubMed  Google Scholar 

  139. Varenne O, Pislaru S, Gillijns H, Van Pelt N, Gerard RD, Zoldhelyi P et al (1998) Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 98(9):919–926

    Article  CAS  PubMed  Google Scholar 

  140. von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M et al (1995) Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92(4):1137–1141

    Article  PubMed  PubMed Central  Google Scholar 

  141. von der Thusen JH, Fekkes ML, Passier R, van Zonneveld AJ, Mainfroid V, van Berkel TJ et al (2004) Adenoviral transfer of endothelial nitric oxide synthase attenuates lesion formation in a novel murine model of postangioplasty restenosis. Arterioscler Thromb Vasc Biol 24(2):357–362

    Article  PubMed  Google Scholar 

  142. Lei J, Vodovotz Y, Tzeng E, Billiar TR (2013) Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 35:175–185

    Article  CAS  PubMed  Google Scholar 

  143. Fishbein I, Guerrero DT, Alferiev IS, Foster JB, Minutolo NG, Chorny M et al (2017) Stent-based delivery of adeno-associated viral vectors with sustained vascular transduction and iNOS-mediated inhibition of in-stent restenosis. Gene Ther 24(11):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rao J, Pan Bei H, Yang Y, Liu Y, Lin H, Zhao X (2020) Nitric oxide-producing cardiovascular stent coatings for prevention of thrombosis and restenosis. Front Bioeng Biotechnol. 8:578

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ali El-Basyuni Y, Li Y, Anand-Srivastava MB (2016) Knockdown of Inhibitory guanine nucleotide binding protein gialpha-2 by antisense oligodeoxynucleotides attenuates the development of hypertension and tachycardia in spontaneously hypertensive rats. J Am Heart Assoc 5(11)

    Google Scholar 

  146. Li Y, Anand-Srivastava MB (2002) Inactivation of enhanced expression of G(i) proteins by pertussis toxin attenuates the development of high blood pressure in spontaneously hypertensive rats. Circ Res 91(3):247–254

    Article  CAS  PubMed  Google Scholar 

  147. Sandoval YH, Li Y, Anand-Srivastava MB (2011) Transactivation of epidermal growth factor receptor by enhanced levels of endogenous angiotensin II contributes to the overexpression of Gialpha proteins in vascular smooth muscle cells from SHR. Cell Signal 23(11):1716–1726

    Article  CAS  PubMed  Google Scholar 

  148. Li Y, Sarkar O, Brochu M, Anand-Srivastava MB (2014) Natriuretic peptide receptor-C attenuates hypertension in spontaneously hypertensive rats: role of nitroxidative stress and Gi proteins. Hypertension 63(4):846–855

    Article  CAS  PubMed  Google Scholar 

  149. Sarkar O, Li Y, Anand-Srivastava MB (2019) Resveratrol prevents the development of high blood pressure in spontaneously hypertensive rats through the inhibition of enhanced expression of Giα proteins. Canadian J Physiol Pharmacol 97(9):872–879. https://doi.org/10.1139/cjpp-2019-0040/

  150. Hermann M, Flammer A, Lüscher TFJTJoCH (2006) Nitric oxide in hypertension 8:17–29

    Google Scholar 

  151. Demougeot C, Prigent-Tessier A, Marie C, Berthelot AJJoh (2005) Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats. 23(5):971–978

    Google Scholar 

  152. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91(16):7583–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tanaka Y, Tang G, Takizawa K, Otsuka K, Eghbali M, Song M et al (2006) KV channels contribute to nitric oxide-and atrial natriuretic peptide-induced relaxation of a rat conduit artery 317(1):341–354

    CAS  Google Scholar 

  154. Lüscher TF, Spieker LE, Noll G, Cosentino FJJocp (2001) Vascular effects of newer cardiovascular drugs: focus on nebivolol and ACE-inhibitors 38:S3–S12

    Google Scholar 

  155. Sandoo A, van Zanten JJCSV, Metsios GS, Carroll D, Kitas GD (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312

    Google Scholar 

  156. Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J et al (2005) Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension 23(2):233–246

    Google Scholar 

  157. Lüscher T, Vanhoutte PMJH (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat 8(4):344–348

    Google Scholar 

  158. Panza JA, Quyyumi AA, Brush JE Jr (1990) Epstein SEJNEJoM. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension 323(1):22–27

    CAS  Google Scholar 

  159. Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM et al (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378(6555):383–386

    Article  CAS  PubMed  Google Scholar 

  160. Sun Y, Carretero OA, Xu J, Rhaleb NE, Yang JJ, Pagano PJ et al (2009) Deletion of inducible nitric oxide synthase provides cardioprotection in mice with 2-kidney, 1-clip hypertension. Hypertension 53(1):49–56

    Article  CAS  PubMed  Google Scholar 

  161. Friebe A, Koesling D (2009) The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide 21(3–4):149–156

    Article  CAS  PubMed  Google Scholar 

  162. Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA 104(18):7699–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C et al (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17(11):3045–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U et al (2004) cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension 44(6):952–955

    Article  CAS  PubMed  Google Scholar 

  165. Di Fusco F, Anand-Srivastava MB (1997) Nitric oxide synthase inhibition by N(omega)-nitro-L-arginine methyl ester modulates G-protein expression and adenylyl cyclase activity in rat heart. Am J Hypertens 10(4 Pt 1):471–475

    Article  PubMed  Google Scholar 

  166. Arnal JF, el Amrani AI, Chatellier G, Menard J, Michel JB (1993) Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension 22(3):380–387

    Article  CAS  PubMed  Google Scholar 

  167. Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS (2013) Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 35:65–71

    Article  CAS  PubMed  Google Scholar 

  168. Sasser JM, Sullivan JC, Elmarakby AA, Kemp BE, Pollock DM, Pollock JS (2004) Reduced NOS3 phosphorylation mediates reduced NO/cGMP signaling in mesenteric arteries of deoxycorticosterone acetate-salt hypertensive rats. Hypertension 43(5):1080–1085

    Article  CAS  PubMed  Google Scholar 

  169. Kimura K, Nishio I (1999) Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest 59(3):199–204

    Article  CAS  PubMed  Google Scholar 

  170. Stankevicius E, Martinez AC, Mulvany MJ, Simonsen U (2002) Blunted acetylcholine relaxation and nitric oxide release in arteries from renal hypertensive rats. J Hypertens 20(8):1571–1579

    Article  CAS  PubMed  Google Scholar 

  171. Li Q, Youn JY, Cai H (2015) Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens 33(6):1128–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505

    Article  CAS  PubMed  Google Scholar 

  173. Classen HG, Stein-Hammer C, Thoni H (1990) Hypothesis: the effect of oral nitrite on blood pressure in the spontaneously hypertensive rat. Does dietary nitrate mitigate hypertension after conversion to nitrite? J Am Coll Nutr 9(5):500–502

    Google Scholar 

  174. Ling WC, Lau YS, Murugan DD, Vanhoutte PM, Mustafa MR (2015) Sodium nitrite causes relaxation of the isolated rat aorta: by stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle. Vascul Pharmacol 74:87–92

    Article  CAS  PubMed  Google Scholar 

  175. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR (2016) Sodium nitrite exerts an antihypertensive effect and improves endothelial function through activation of eNOS in the SHR. Sci Rep 6:33048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Amaral JH, Ferreira GC, Pinheiro LC, Montenegro MF, Tanus-Santos JE (2015) Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol 5:340–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Guimaraes DD, Cruz JC, Carvalho-Galvao A, Zhuge Z, Marques SM, Naves LM et al (2019) Dietary nitrate reduces blood pressure in rats with angiotensin II-induced hypertension via mechanisms that involve reduction of sympathetic hyperactivity. Hypertension 73(4):839–848

    Article  CAS  PubMed  Google Scholar 

  178. Montenegro MF, Amaral JH, Pinheiro LC, Sakamoto EK, Ferreira GC, Reis RI et al (2011) Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med 51(1):144–152

    Article  CAS  PubMed  Google Scholar 

  179. Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM, Nomura A et al (2018) Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137(3):222–232

    Article  CAS  PubMed  Google Scholar 

  180. Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R et al (2003) Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23(8):1455–1459

    Article  CAS  PubMed  Google Scholar 

  181. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  PubMed  Google Scholar 

  182. Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Salvetti A (1996) Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94(6):1298–1303

    Article  CAS  PubMed  Google Scholar 

  183. Schlaich MP, Parnell MM, Ahlers BA, Finch S, Marshall T, Zhang WZ et al (2004) Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation 110(24):3680–3686

    Article  CAS  PubMed  Google Scholar 

  184. Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T et al (2002) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15(4 Pt 1):326–332

    Article  CAS  PubMed  Google Scholar 

  185. Hishikawa K, Nakaki T, Suzuki H, Kato R, Saruta T (1992) L-arginine as an antihypertensive agent. J Cardiovasc Pharmacol 20(Suppl 12):S196–S197

    Article  PubMed  Google Scholar 

  186. Chen PY, Sanders PW (1991) L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88(5):1559–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA et al (2004) Perinatal L-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44(1):83–88

    Article  CAS  PubMed  Google Scholar 

  188. Bagnost T, Ma L, da Silva RF, Rezakhaniha R, Houdayer C, Stergiopulos N et al (2010) Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res 87(3):569–577

    Article  CAS  PubMed  Google Scholar 

  189. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cosentino F, Patton S, d’Uscio LV, Werner ER, Werner-Felmayer G, Moreau P et al (1998) Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 101(7):1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Meininger CJ, Marinos RS, Hatakeyama K, Martinez-Zaguilan R, Rojas JD, Kelly KA et al (2000) Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 349(Pt 1):353–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 43(11):1435–1438

    Article  CAS  PubMed  Google Scholar 

  193. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14(8):323–327

    Article  CAS  PubMed  Google Scholar 

  194. Maier W, Cosentino F, Lutolf RB, Fleisch M, Seiler C, Hess OM et al (2000) Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J Cardiovasc Pharmacol 35(2):173–178

    Article  CAS  PubMed  Google Scholar 

  195. Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26(11):2439–2444

    Article  CAS  PubMed  Google Scholar 

  196. Katusic ZS (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281(3):H981–H986

    Article  CAS  PubMed  Google Scholar 

  197. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339(8793):572–575

    Article  CAS  PubMed  Google Scholar 

  198. Anderssohn M, Schwedhelm E, Luneburg N, Vasan RS, Boger RH (2010) Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus. Diab Vasc Dis Res 7(2):105–118

    Article  PubMed  Google Scholar 

  199. Das UN, Repossi G, Dain A, Eynard AR (2011) L-arginine, NO and asymmetrical dimethylarginine in hypertension and type 2 diabetes. Front Biosci (Landmark Ed) 16:13–20

    Article  CAS  PubMed  Google Scholar 

  200. Boger RH (2004) Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr 134(10 Suppl):2842S–2847S. discussion 53S

    Google Scholar 

  201. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS et al (2019) Atherosclerosis. Nat Rev Dis Primers 5(1):56

    Google Scholar 

  202. Steinberg D, Witztum JL (2010) Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol 30(12):2311–2316

    Article  CAS  PubMed  Google Scholar 

  203. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4):503–516

    Google Scholar 

  204. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  205. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8 Suppl):C7-12

    Article  CAS  PubMed  Google Scholar 

  206. Libby P, Bornfeldt KE, Tall AR (2016) Atherosclerosis: successes, surprises, and future challenges. Circ Res 118(4):531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL (1999) Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 103(6):897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M et al (2001) The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem 276(17):13750–13755

    Article  CAS  PubMed  Google Scholar 

  209. Aji W, Ravalli S, Szabolcs M, Jiang XC, Sciacca RR, Michler RE et al (1997) L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation 95(2):430–437

    Article  CAS  PubMed  Google Scholar 

  210. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90(3):1168–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Holm P, Korsgaard N, Shalmi M, Andersen HL, Hougaard P, Skouby SO et al (1997) Significant reduction of the antiatherogenic effect of estrogen by long-term inhibition of nitric oxide synthesis in cholesterol-clamped rabbits. J Clin Invest 100(4):821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kauser K, da Cunha V, Fitch R, Mallari C, Rubanyi GM (2000) Role of endogenous nitric oxide in progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 278(5):H1679–H1685

    Article  CAS  PubMed  Google Scholar 

  213. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88(11):4651–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Alheid U, Frolich JC, Forstermann U (1987) Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res 47(5):561–571

    Article  CAS  PubMed  Google Scholar 

  215. Takahashi M, Ikeda U, Masuyama J, Funayama H, Kano S, Shimada K (1996) Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8(11):817–821

    Article  CAS  PubMed  Google Scholar 

  216. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76(6):980–986

    Article  CAS  PubMed  Google Scholar 

  217. Bea F, Blessing E, Bennett B, Levitz M, Wallace EP, Rosenfeld ME (2002) Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol 22(11):1832–1837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Original work contributing to this chapter was supported by grants from the Heart Stroke Foundation of Canada and Canadian Institutes of Health Research to M.B.A.-S. and A.K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu B. Anand-Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Srivastava, A.K., Anand-Srivastava, M.B. (2023). Nitric Oxide and Cardiovascular Health. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_2

Download citation

Publish with us

Policies and ethics