Skip to main content
Log in

Noninvasive assessment of mechanical properties of peripheral arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An ultrasound examination was used to noninvasively determine the changes in mechanical properties associated with age for the common carotid, brachial, popliteal, femoral, and tibial arteries. Forty-two normal male subjects, ranging in age from 8 to 60 years of age, were examined. The subjects were placed in one of three age groups: <29 years of age, 29 to 38, and >38. Mechanical properties including percentage variation in diameter, pressure-strain, and circumferential elastic modulus were determined from changes in wall thickness and pulse pressure. Percentage variation in diameter (PVD) was seen to decrease with age for all arteries except the brachial, which remained relatively constant. Pressure-strain (Ep) and circumferential elastic moduli (Eo) were seen to increase with age in all arteries except the brachial, which remained relatively constant. Values of Ep and Eo were normalized into a stiffness index by dividing by the value found for the brachial artery. Stiffness indexes for the common carotid and femoral arteries were observed to increase more rapidly with age than the indexes obtained for the popliteal and tibial arteries. It is proposed that the stiffness index and changes in this parameter that occur with age may be useful in noninvasively assessing the progression of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arndt, J.D.; Stegall, H.F.; Wicke, H.J. Mechanics of the aortain vivo: a radiographic approach. Circulation Research 28:693–705; 1971.

    CAS  PubMed  Google Scholar 

  2. Arndt, J.O.; Kober, G. Die Druck-Durchmesser-Beziehung der intaken A. femoralis des wachen Menschen und ihre Beeinflussung durch Noradrenalin-Infusionen. Pflugers Arch. 318:130–146; 1970.

    Article  CAS  PubMed  Google Scholar 

  3. Bergel, D.H. The dynamic elastic properties of the arterial wall. J. Physiology 156:458–469; 1961.

    Google Scholar 

  4. Bergel, D.H. The static elastic properties of the arterial wall. J. Physiology 156:445–457; 1961.

    Google Scholar 

  5. Biological Handbooks: Respiration and Circulation. Altman, P.L.; Dittmen, D.S., eds. Federation of American Societies for Experimental Biology, Bethesda, MD; 1971: p. 416.

    Google Scholar 

  6. Buntin, C.M.; Silver, F.H. Noninvasive measurement of rabbit aortic wall thickness using ultrasound and histological analysis. Biomedical Sciences Instrumentation, Proceedings of Twenty-Fifth Annual Rocky Mountain Bioengineering Symposium 29:119–124; 1988.

    Google Scholar 

  7. Dunn, M.G.; Silver, F.H. Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components. Connective Tissue Research 12:59–70; 1983.

    CAS  PubMed  Google Scholar 

  8. Fitchett, D.; Bauthier, J.O.; Simon, A.Ch.; Levenson, J.A.; Safar, M.E. Forearm arterial compliance: the validation of a plethysmographic technique for the measurement of arterial compliance. Clinical Science 67:69–72; 1984.

    CAS  PubMed  Google Scholar 

  9. Gordon, R.D.; Garret, E.H. Vascular Surgery, 2nd ed. Rutherford, R.B., ed. Philadelphia: W.B. Saunders Company; 1984: p. 688 (cn. 67).

    Google Scholar 

  10. Gow, B.S.; Taylor, M.G. Measurement of viscoelastic properties of arteries in the living dog. Circulation Research 23:111–122; 1968.

    CAS  PubMed  Google Scholar 

  11. Gozna, E.R.; Marble, A.F.; Shaw, A.J.; Winter, D.A. Mechanical properties of the ascending thoracic aorta of man. Circulation Research 7:261–265; 1973.

    CAS  Google Scholar 

  12. Greenfield, J.C.; Patel, D.J. Relation between pressure and diameter in the ascending aorta of man. Circulation Research 10:778–781; 1962.

    PubMed  Google Scholar 

  13. Greenfield, J.C.; Tindall, G.T.; Dillon, M.L.; Mahaley, M.S. Mechanics of the human common carotid arteryin vivo. Circulation Research 15:240–246; 1964.

    PubMed  Google Scholar 

  14. Ham, A.W. Histology. Philadelphia: J.B. Lippincott Co.; 1074: pp. 560–571.

    Google Scholar 

  15. Hughes, D.J.; Babbs, C.F.; Geddes, L.A.; Bourland, J.D. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrasonic Imaging 1:356–367; 1979.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes, D.J.; Fearnot, N.E.; Babbs, C.F.; Bourland, J.D.; Geddes, L.A.; Eggelton, R. Continuous measurement of aortic radius changein vivo with an intra-aortic ultrasonic catheter. Med. and Biol. Eng. and Comput. 23:197–202; 1985.

    CAS  Google Scholar 

  17. Kalath, S.; Tsipouras, P.; Silver, F.H. Noninvasive assessment of aortic mechanical properties. Annals of Biomed. Eng. 14:513–524; 1986.

    CAS  Google Scholar 

  18. Kalath, S.; Tsipouras, P.; Silver, F.H. Increased aortic root stiffness associated with Osteogenesis Imperfecta. Annals of Biomed. Eng. 15:91–99; 1987.

    CAS  Google Scholar 

  19. Kirkendall, W.M.: Feinleib, M.; Freis, E.D.; Mark, A.L. Recommendations for human blood pressure determination by sphygmomanometers: A.H.A. Committee Report. News from the American Heart Association: 1146A–1155A; 1980.

  20. Korteweg, D.J. Uber die Fortpflanzungs-Geschwindigkeit des Schalles in elastischen Rohren. (On the velocity of transmission of mechanical waves in elastic tubes). Annalen der Physik und Chemie 5:525–542; 1878.

    Google Scholar 

  21. Labat-Robert, J.; Szendroi, M.; Godeaiu, G.; Robert, L. Comparative distribution patterns of type I and III collagen and fibronectin in human arteriosclerotic aorta. Pathologic Biologie 33:261–265; 1985.

    CAS  Google Scholar 

  22. Landowne, M. Characteristics of impact and pulse wave propagation in brachial and radial arteries. J. Applied Physiology 12(1):91–97; 1958.

    CAS  Google Scholar 

  23. Mallos, A.J. An electrical caliper for continuous measurement of relative displacement. J. Applied Physiology 17:131–134; 1962.

    CAS  Google Scholar 

  24. McDonald, D.A. Blood flow in arteries. 2nd ed., Baltimore: Williams and Wilkins; 1960.

    Google Scholar 

  25. McDonald, D.A. Regional pulse-wave velocity in the arterial tree. J. Applied Physiology 24:73–78; 1968.

    CAS  Google Scholar 

  26. Merillon, J.P.; Motte, G.; Fruchaud, J.; Gourgon, R. Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovascular Research 12:401–406; 1978.

    CAS  PubMed  Google Scholar 

  27. Morton, L.F.; Barnes, M.J. The quantitation of arterial elasticity from Doppler flow measurements. Clin. and Exp. Pharm. and Physiol. 10:315–318; 1983.

    Google Scholar 

  28. Nichols, W.W.; McDonald, D.A. Wave velocity in the proximal aorta. Medical and Biological Engineering 10:327–335; 1972.

    CAS  Google Scholar 

  29. Olson, R.M.; Cooke, J.P. A nondestructive ultrasonic technique to measure diameter and blood flow in arteries. IEEE Trans. BME-21:168–171; 1974.

    CAS  Google Scholar 

  30. Patel, D.J.; Schilder, D.P.; Mallos, A.J. Mechanical properties and dimensions of the major pulmonary arteries. J. Applied Physiology 15:92–96; 1960.

    CAS  Google Scholar 

  31. Patel, D.J.; DeFreitas, F.M.; Fry, D.L. Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Applied Physiology 10:134–140; 1963.

    Google Scholar 

  32. Patel, D.J.; DeFreitas, F.M.; Greenfield, J.G.; Fry, D.L. Relationship of radius to pressure along the aorta in living dogs. J. Applied Physiology 18:1111–1117; 1963.

    CAS  Google Scholar 

  33. Patel, D.J.; Fry, D.L.In situ pressure-radius-length measurements in ascending aorta of anesthetized dogs. J. Applied Physiology 19:413–416; 1964.

    CAS  Google Scholar 

  34. Patel, D.J.; Janicki, J.S.; Carew, T.E. Static anisotropic elastic properties of the aorta in living dogs. Circulation Research 25:765–775; 1969.

    CAS  PubMed  Google Scholar 

  35. Peterson, L.M.; Jensen, R.E.; Parnell, J. Mechanical properties of arteriesin vivo. Circulation Research 8:622–639; 1960.

    Google Scholar 

  36. Pyeritz, R.E.; Levin, L.S. Aortic root dilatation and valvular dysfunction in osteogenesis imperfecta. (abstr) Circulation 64, suppl. IV:311; 1981.

    Google Scholar 

  37. Silver, F.H.; Christiansen, D.L.; Buntin, C.M. Mechanical properties of the aorta: a review. CRC Critical Reviews in Biomedical Engineering 17:323–358; 1989.

    CAS  Google Scholar 

  38. Smith, R.; Francis, M.J.O.; Houghton, G.R. The Brittle Bone Syndrome, London: Butterworth; 1983.

    Google Scholar 

  39. Wezler, K.; Berger, A. Die Dynamik des arteriellen Systems. Erg. Physiol. 41:359–606; 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buntin, C.M., Silver, F.H. Noninvasive assessment of mechanical properties of peripheral arteries. Annals of Biomedical Engineering 18, 549–566 (1990). https://doi.org/10.1007/BF02364617

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364617

Keywords

Navigation