Skip to main content

Ultrasound Imaging Techniques and Artifacts

  • Chapter
  • First Online:
Pediatric Ultrasound

Abstract

An introduction to the physics and technological principles of diagnostic ultrasound is presented, including (1) a discussion of ultrasound-tissue interactions; (2) the pulse-echo technique; (3) transducers and ultrasound machine instrumentation for the detection and signal processing of echoes and image formation; (4) Doppler ultrasound; (5) B-mode and Doppler ultrasound artifacts. An overview of advanced ultrasound modes including harmonic and compound imaging, elastography, 3D imaging, ultrasound contrast, bioeffects, and safety of ultrasound is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4D:

Four-dimensional

A:

Amplitude

A/D:

Analog-to-digital

AIUM:

American Institute of Ultrasound in Medicine

ARFI:

Acoustic radiation force impulse

AVF:

Arteriovenous fistula

B:

Brightness

C:

Constant-range

CGS:

Centimeter-gram-second

CNR:

Contrast-to-noise ratio

CT:

Computed tomography

CW:

Continuous wave

D/A:

Digital-to-analog

DICOM:

Digital Imaging and Communications in Medicine

DR:

Dynamic range

DVD:

Digital video disc

EFSUMB:

European Federation of Societies for Ultrasound in Medicine and Biology

EI/B ratio:

Elastography image size (EI) to B-mode (B) ratio

Eq.:

Equation

FDA:

Food and Drug Administration

FOV:

Field of view

FR:

Frame rate

FT:

Frame time

IVC:

Inferior vena cava

M:

Motion

MI:

Mechanical index

MR:

Magnetic resonance

NCRP:

National Council on Radiation Protection and Measurement

NEMA:

National Electrical Manufacturers Association

ODS:

Output Display Standard

PRF:

Pulse repetition frequency

PRP:

Pulse repetition period

PZT:

Lead zirconate titanate

PW:

Pulsed wave

ROI:

Region of interest

SI:

International System

SSI:

Supersonic imaging

SNR:

Signal-to-noise ratio

SSWE:

Supersonic shear wave elastography

SWI:

Shear wave imaging

TGC:

Time gain compensation

THI:

Tissue harmonic imaging

TI:

Thermal index

TIB:

Bone thermal index

TIC:

Cranial thermal index

3D:

Three-dimensional

TIPS:

Transjugular intrahepatic portosystemic shunt

T/R:

Transmit/receive

2D:

Two-dimensional

UCA:

Ultrasound contrast agents

US:

United States

WFUMB:

World Federation for Ultrasound in Medicine and Biology

Z:

Acoustic impedance

References

  1. Hedrick WR, Hykes DL, Starchman DE. Ultrasound physics and instrumentation. 4th. ed. St. Louis. Elsevier Mosby; 2005.

    Google Scholar 

  2. Szabo TL, Wells PNT. Part 2: Technology and measurement in diagnostic imaging. Transducer arrays for medical ultrasound imaging. Doppler technology and techniques. In: Duck FA, Baker AC, Staritt HC, editors. 1st ed. Ultrasound in medicine. Bristol and Philadelphia. Institute of Physics Publishing; 1998.

    Google Scholar 

  3. Whittingham T, Martin K. Transducers and beam-forming. In: Hoskins PR, Martin K, Thrush A, editors. Diagnostic ultrasound physics and equipment. Cambridge. Cambridge University Press; 2010.

    Google Scholar 

  4. Kino G. Acoustic waves: devices, imaging, and analog signal processing. Upper Saddle River (NJ): Prentice-Hall; 1987. (Signal processing series).

    Google Scholar 

  5. Yurdakul M, Tola M, Cumhur T. B-flow imaging of internal carotid artery stenosis: comparison with power Doppler imaging and digital subtraction angiography. J Clin Ultrasound. 2004;32:243–8.

    Article  PubMed  Google Scholar 

  6. Wachsberg RH. B-flow imaging of the hepatic vasculature: correlation with color Doppler sonography. AJR Am J Roentgenol. 2007;188(6):W522–33.

    Article  PubMed  Google Scholar 

  7. Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):​487–95.

    Article  PubMed  Google Scholar 

  8. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47.

    Google Scholar 

  9. Kamaya A, Machtaler S, Safari Sanjani S, Nikoozadeh A, Graham Sommer F, Pierre Khuri-Yakub BT, et al. New technologies in clinical ultrasound. Semin Roentgenol. 2013;48(3):214–23.

    Google Scholar 

  10. Hall TJ, Zhu Y, Spalding C. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29(3):427–35.

    Article  PubMed  Google Scholar 

  11. Shiina T, Nitta N, Ueno E, Bamber JC. Real time tissue elasticity imaging using the combined autocorrelation method. J Med Ultrason (2001). 2002;29(3):119–28.

    Article  Google Scholar 

  12. Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T, et al. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason (2001). 2002;29(4):155.

    Google Scholar 

  13. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Google Scholar 

  14. Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001;110(1):625–34.

    Article  CAS  PubMed  Google Scholar 

  15. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.

    Article  CAS  PubMed  Google Scholar 

  16. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  17. Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bercoff J. Ultrafast ultrasound imaging, ultrasound imaging - medical applications, Igor V. Minin and Oleg V. Minin, IntechOpen, https://doi.org/10.5772/19729. 2011, 23 Aug. Available from: https://www.intechopen.com/books/ultrasound-imaging-medical-applications/ultrafast-ultrasound-imaging.

  19. Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435–49.

    Google Scholar 

  20. Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014;72:49–64.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538(7624):183–92.

    Google Scholar 

  22. Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O’Reilly MA, et al. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol. 2020;46(6):1296–325.

    Google Scholar 

  23. Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target. 2018;26(5–6):420–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rapoport N. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery. In: Escoffre JM, Bouakaz A, editors. Therapeutic ultrasound. Berlin. Springer; 2016.

    Google Scholar 

  25. Stride E, Coussios C. Nucleation, mapping and control of cavitation for drug delivery. Nat Rev Phys. 2019;1:495–509.

    Article  CAS  Google Scholar 

  26. Bader KB, Gruber MJ, Holland CK. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med Biol. 2015;41(1):187–96.

    Article  PubMed  Google Scholar 

  27. O'Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93(1–3):212–55.

    Article  PubMed  Google Scholar 

  28. Nyborg WL. Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol. 2001;27(3):301–33.

    Article  CAS  PubMed  Google Scholar 

  29. Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don-Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, DS., Paltiel, H.J., White, P.J., Sassaroli, E. (2021). Ultrasound Imaging Techniques and Artifacts. In: Paltiel, H.J., Lee, E.Y. (eds) Pediatric Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-030-56802-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56802-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56801-6

  • Online ISBN: 978-3-030-56802-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics