Skip to main content

Advertisement

Log in

Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The assessment of body composition has important applications in the evaluation of nutritional status and estimating potential health risks. Bioelectrical impedance analysis (BIA) is a valid method for the assessment of body composition. BIA is an alternative to more invasive and expensive methods like dual-energy X-ray absorptiometry, computerized tomography, and magnetic resonance imaging. Bioelectrical impedance analysis is an easy-to-use and low-cost method for the estimation of fat-free mass (FFM) in physiological and pathological conditions. The reliability of BIA measurements is influenced by various factors related to the instrument itself, including electrodes, operator, subject, and environment. BIA assumptions beyond its use for body composition are the human body is empirically composed of cylinders, FFM contains virtually all the water and conducting electrolytes in the body, and its hydration is constant. FFM can be predicted by BIA through equations developed using reference methods. Several BIA prediction equations exist for the estimation of FFM, skeletal muscle mass (SMM), or appendicular SMM. The BIA prediction models differ according to the characteristics of the sample in which they have been derived and validated in addition to the parameters included in the multiple regression analysis. In choosing BIA equations, it is important to consider the characteristics of the sample in which it has been developed and validated, since, for example, age- and ethnicity-related differences could sensitively affect BIA estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buffa R, Floris GU, Putzu PF et al (2011) Body composition variations in ageing. Coll Antropol 35:259–265

    PubMed  Google Scholar 

  2. Roubenoff R (2000) Sarcopenia and its implications for the elderly. Eur J Clin Nutr 54:S40–S47

    Article  PubMed  Google Scholar 

  3. Seidell JC, Hautvast JG, Deurenberg P (1989) Overweight: fat distribution and health risks. Epidemiological observations. A review. Infus Basel Switz 16:276–281

    CAS  Google Scholar 

  4. Forsum E, Henriksson P, Löf M (2014) The two-component model for calculating total body fat from body density: an evaluation in healthy women before, during and after pregnancy. Nutrients 6:5888–5899

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meydani M (2001) Nutrition interventions in aging and age-associated disease. Ann N Y Acad Sci 928:226–235

    Article  CAS  PubMed  Google Scholar 

  6. Sjostrom L (1991) A computer based multicompartment body composition technique and anthropometric predictors of lean body mass, total and subcutaneous adipose tissue. Int J Obes 15(S2):19–30

    PubMed  Google Scholar 

  7. Selberg O, Buchert W, Geaubner G et al (1993) Determination of anatomical skeletal muscle mass by whole body nuclear magnetic resonance. Basic Life Sci 60:95–97

    CAS  PubMed  Google Scholar 

  8. Choi YJ (2010) Dual-energy X-ray absorptiometry: beyond bone mineral density determination. J Nutr Health Aging 14:418–426

    Article  Google Scholar 

  9. Kyle UG, Bosaeus I, de Lorenzo AD et al (2004) Bioelectrical impedance analysis—Part I: review of principles and methods. Clin Nutr Edinb Scotl 23:1226–1243

    Article  Google Scholar 

  10. Böhm A, Heitmann BL (2013) The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur J Clin Nutr 67:S79–S85

    Article  PubMed  Google Scholar 

  11. Lukaski HC, Johnson PE, Bolanchuk WW et al (1985) Assessment of fat-free mass using bioelectrical impedance measurement of the human body. Am J Clin Nutr 41:810–817

    CAS  PubMed  Google Scholar 

  12. Segal KR, Van Loan M, Fitzgerald PI et al (1988) Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 47:7–14

    CAS  PubMed  Google Scholar 

  13. Sun SS, Chumlea WC, Heymsfield SB et al (2003) Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 77:331–340

    CAS  PubMed  Google Scholar 

  14. Deurenberg P, van der Kooy K, Leenen R et al (1991) Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes 15:17–25

    CAS  PubMed  Google Scholar 

  15. Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17:248–253

    Article  CAS  PubMed  Google Scholar 

  16. Jakicic JM, Wing RR, Lang W (1998) Bioelectrical impedance analysis to assess body composition in obese adult women: the effect of ethnicity. Int J Obes Relat Metab Disord 22:243–249

    Article  CAS  PubMed  Google Scholar 

  17. Roubenoff R, Baumgartner RN, Harris TB et al (1997) Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci 52:M129–M136

    Article  CAS  PubMed  Google Scholar 

  18. Aleman-Mateo H, Rush E, Esparza-Romero J et al (2016) Prediction of fat-free mass by bioelectrical impedance analysis in older adults from developing countries: a cross-validation study using the deuterium dilution method. Endocrinol Metab (Seoul) 31:25–30

    Article  Google Scholar 

  19. Snyder WS, Cook MJ, Nasset ES et al (1975) Report of the task group on reference men. In: 23rd international commission on radiological protection. Oxford, UK: Pergamon

  20. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  21. Gallagher D, Visser M, De Meersman RE et al (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83:229–239

    CAS  PubMed  Google Scholar 

  22. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  23. Janssen I, Heymsfield SB, Baumgartner RN et al (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Phys 89:465–471

    CAS  Google Scholar 

  24. Kyle UG, Genton L, Hans D et al (2003) Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr 22:537–543

    Article  CAS  PubMed  Google Scholar 

  25. Kim JH, Choi SH, Lim S et al (2014) Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling Korean adults. Arch Gerontol Geriatr 58:303–307

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida D, Shimada H, Park H et al (2014) Development of an equation for estimating appendicular skeletal muscle mass in Japanese older adults using bioelectrical impedance analysis. Geriatr Gerontol Int 14:851–857

    Article  PubMed  Google Scholar 

  27. Sergi G, De Rui M, Veronese N et al (2015) Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr 34:667–673

    Article  PubMed  Google Scholar 

  28. Scafoglieri A, Clarys JP, Bauer JM et al (2016) Predicting appendicular lean and fat mass with bioelectrical impedance analysis in older adults with physical function decline—the PROVIDE study. Clin Nutr. doi:10.1016/j.clnu.2016.04.026

    PubMed  Google Scholar 

  29. Buckinx F, Reginster JY, Dardenne N et al (2015) Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord 18:60

    Article  Google Scholar 

  30. Organ LW, Bradham GB, Gore DT et al (1994) Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol 77:98–112

    CAS  PubMed  Google Scholar 

  31. De Rui M, Veronese N, Bolzetta F et al (2016) Validation of bioelectrical impedance analysis for estimating limb lean mass in free-living Caucasian elderly people. Clin Nutr. doi:10.1016/j.clnu.2016.04.011

    PubMed  Google Scholar 

  32. Nescolarde L, Lukaski H, De Lorenzo A et al (2016) Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. Eur J Clin Nutr. doi:10.1038/ejcn.2016.121

    PubMed  Google Scholar 

  33. Schell B, Gross R (1987) The reliability of bioelectrical impedance measurements in the assessment of body composition in healthy adults. Nutr Rep Int 36:449–459

    Google Scholar 

  34. Cáceres DI, Sartor-Messagi M, Rodríguez DA et al (2014) Variability in bioelectrical impedance assessment of body composition depending on measurement conditions: influence of fast and rest. Nutr Hosp 30:1359–1365

    PubMed  Google Scholar 

  35. Deurenberg P, Weststrate JA, Paymans I et al (1998) Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr 42:1017–1022

    Google Scholar 

  36. Gudivaka R, Schoeller D, Kushner RF (1996) Effect of skin temperature on multifrequency bioelectrical impedance analysis. J Appl Physiol 81:838–845

    CAS  PubMed  Google Scholar 

  37. Heyward VH (1998) Practical body composition assessment for children, adults, and older adults. Int J Sport Nutr 8:285–307

    Article  CAS  PubMed  Google Scholar 

  38. Lukaski HC, Bolonchuk WW, Hall CB et al (1986) Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 60:1327–1332

    CAS  PubMed  Google Scholar 

  39. Caton JR, Mole PA, Adams WC et al (1988) Body composition analysis by bioelectrical impedance: effect on skin temperature. Med Sci Sports Exerc 20:489–491

    Article  CAS  PubMed  Google Scholar 

  40. Garby L, Lammert O, Nielsen E (1990) Negligible effects of physical activity and change in environmental temperature on whole body electrical impedance. Eur J Clin Nutr 44:545–546

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina De Rui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergi, G., De Rui, M., Stubbs, B. et al. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res 29, 591–597 (2017). https://doi.org/10.1007/s40520-016-0622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-016-0622-6

Keywords

Navigation