Skip to main content
Log in

K+-conductance and electrogenic Na+/K+ transport of cultured bovine pigmented ciliary epithelium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged −46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K + o depolarized, K + o readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berggren, L. 1960. Intracellular potential measurements from the ciliary processes of the rabbit eye in vivo and in vitro.Acta Physiol. Scand 48:461–470

    PubMed  Google Scholar 

  2. Biagi, B., Sohtell, M. 1986. pH sensitivity of the basolateral membrane of the rabbit proximal tubule.Am. J. Physiol. 250:F261-F266

    PubMed  Google Scholar 

  3. Biagi, B., Sohtell, M., Giebisch, G. 1981. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686

    PubMed  Google Scholar 

  4. Bill, A. 1973. The role of ciliary blood flow and ultrafiltration in aqueous humor formation.Exp. Eye Res. 16:287–298

    PubMed  Google Scholar 

  5. Burckhardt, B.-C., Frömter, E. 1980. Bicarbonate transport across the peritubular membrane of rat kidney proximal tubule.In: Hydrogen Transport in Epithelia. I. Schulz, G. Sachs, J.G. Forte, and F.K. Ullrich, editors. pp. 277–285. Elsevier/North Holland, New York

    Google Scholar 

  6. Burnham, C., Braw, R., Karlish, S.J.D. 1986. A Ca-dependent K channel in “luminal” membranes from the renal outer medulla.J. Membrane Biol. 93:177–186

    Google Scholar 

  7. Burstein, N.L., Fischbarg, J., Liebovitch, L. 1984. Electrical potential, resistance, and fluid secretion across the isolated ciliary body.Exp. Eye Res. 39:771–779

    PubMed  Google Scholar 

  8. Candia, O.A., Iizuka, S., Chu, T.-C. 1986. Intracellular recordings in the isolated ciliary epithelium.Invest. Ophthalmol. Vis. Sci. 27(Suppl.):178

    Google Scholar 

  9. Carrasquer, G., Rehm, W.S., Schwartz, M. 1986. Amphotericin B enhanced anomalous potential difference response to changes in aqueous K+ in frog cornea.Biochim. Biophys. Acta 862:178–184

    PubMed  Google Scholar 

  10. Cemerikic, D., Giebisch, G. 1980. Intracellular sodium activity inNecturus kidney proximal tubule.Fed. Proc. 39:1080

    Google Scholar 

  11. Chu, T.-C., Candia, O.A., Iizuka, S. 1986. Effects of forskolin, prostaglandin F and Ba++ on the short-circuit current of the isolated rabbit iris-ciliary body.Curr. Eye Res. 7:511–516

    Google Scholar 

  12. Cilluffo, M.C., Fain, M.J., Fain, G.L., Brecha, N.C. 1986. Culture of rabbit ciliary body epithelium.Invest. Ophthalmol. Vis. Sci. 27(Suppl):322

    Google Scholar 

  13. Coca-Prados, M., Kondo, K. 1985. Separation of bovine pigmented ciliary epithelial cells by density gradient and further characterization in culture.Exp. Eye Res 40:731–739

    PubMed  Google Scholar 

  14. Cole, D.F. 1962. Transport across the isolated ciliary body of ox and rabbit.Br. J. Ophthalmol. 46:577–591

    Google Scholar 

  15. Cole, D.F. 1966. Aqueous humor formation.Doc. Ophthalmol. 21:116–131

    Google Scholar 

  16. Cook, D.L., Ikeuchi, M., Fujimoto, W.Y. 1984. Lowering of pH i inhibits Ca2+-activated K+ channels in pancreatic B-cells.Nature (London) 311:269–271

    Google Scholar 

  17. Delamere, N.A., Duncan, G., Paterson, C.A. 1980. Characteristics of voltage-dependent conductance in the membranes of a non-excitable tissue: The amphibian lens.J. Physiol. (London) 308:49–59

    Google Scholar 

  18. Dubois, J.M., Bergmann, C. 1977. The steady-state potassium conductance of the Ranvier node at various external K-concentrations.Pfluegers Arch. 370:185–194

    Google Scholar 

  19. Elena, P.P., Fredj-Reygrobellet, D., Moulin, G., Lapalus, P. 1984. Pharmacological characteristics of β-adrenergic-sensitive adenylate cyclase in non pigmented and in pigmented cells of bovine ciliary process.Curr. Eye Res. 3:1383–1389

    PubMed  Google Scholar 

  20. Garg, L.C., Oppelt, W.W. 1970. The effect of ouabain and acetazolamide on transport of sodium and chloride from plasma to aqueous humor.J. Pharmacol. Exp. Ther. 175:237–247

    PubMed  Google Scholar 

  21. Green, K., Bountra, C., Georgiou, P., House, C.R. 1985. An electrophysiologic study of rabbit ciliary epithelium.Invest. Ophthalmol. Vis. Sci. 26:371–381

    PubMed  Google Scholar 

  22. Helbig, H., Korbmacher, C., Wiederholt, M. 1986. Micropuncture studies of cultured bovine ciliary epithelial cells.Proc. Int. Soc. Eye Res. 4:137

    Google Scholar 

  23. Helbig, H., Korbmacher, C., Wiederholt, M. 1987. Ion transport properties of bovine pigmented ciliary epithelial cells in culture.Pfluegers Arch 408(Suppl):R33

    Google Scholar 

  24. Helman, S.I., Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin: Studies with microelectrodes.J. Gen. Physiol. 74:105–127

    PubMed  Google Scholar 

  25. Iizuka, S., Kishida, K., Tsuboi, S., Emi, K., Manabe, R. 1984. Electrical characteristics of the isolated dog ciliary body.Curr. Eye Res. 3:417–421

    PubMed  Google Scholar 

  26. Jentsch, T.J., Koch, M., Bleckmann, H., Wiederholt, M. 1984. Effect of bicarbonate, pH, methazolamide, and stilbenes on the intracellular potentials of cultured bovine corneal endothelial cells.J. Membrane Biol. 78:103–117

    Google Scholar 

  27. Jentsch, T.J., Matthes, H., Keller, S.K., Wiederholt, M. 1986. Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1).Am. J. Physiol. 251:F954-F968

    PubMed  Google Scholar 

  28. Jörgensen, P.L. 1980. Sodium and potassium ion pump in kidney tubules.Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  29. Keller, S.K., Jentsch, T.J., Koch, M., Wiederholt, M. 1986. Interactions of pH and K+-conductances in cultured bovine retinal pigment epithelial cells.Am. J. Physiol. 250:C124-C137

    PubMed  Google Scholar 

  30. Kimura, G., Spring, K.R. 1979. Luminal Na+ entry intoNecturus proximal tubule cells.Am. J. Physiol. 236:F295-F301

    PubMed  Google Scholar 

  31. Kishida, K., Sasabe, T., Manabe, R., Otori, T. 1981. Electrical characteristics of the isolated rabbit ciliary body.Jpn. J. Ophthalmol 25:407–416

    Google Scholar 

  32. Klemperer, G., Garcia-Diaz, J.F., Nagel, W., Essig, A. 1986. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium.J. Membrane Biol. 90:89–96

    Google Scholar 

  33. Kolb, H.A., Brown, C.D.A., Murer, H. 1986. Characterization of a Ca-dependent maxi K channel in the apical membrane of a cultured renal epithelium (JTC-12.P3).J. Membrane Biol. 92:207–215

    Google Scholar 

  34. Kondo, K., Coca-Prados, M., Sears, M. 1984. Human ciliary epithelial in monolayer culture.Exp. Eye Res. 38:423–433

    PubMed  Google Scholar 

  35. Krupin, T., Reinach, P.S., Candia, O.A., Podos, S.M. 1984. Transepithelial electrical measurements on the isolated rabbit iris-ciliary body.Exp. Eye Res. 38:115–123

    PubMed  Google Scholar 

  36. Lattore, R., Coronado, R., Vergara, C. 1984. K+ channels gated by voltage and ions.Annu. Rev. Physiol. 46:485–495

    PubMed  Google Scholar 

  37. Matsumara, Y., Cohen, B., Guggino, W.B., Giebisch, G. 1984. Regulation of the basolateral potassium conductance of theNecturus proximal tubule.J. Membrane Biol. 79:153–161

    Google Scholar 

  38. Messner, G., Stulnig, G., Rehwald, W., Lang, F. 1986. Influence of potassium depletion on potassium conductance in proximal tubules of frog kidneys.Pfluegers Arch. 407:153–157

    Google Scholar 

  39. Miller, J.E., Constant, M.A. 1960. The measurement of rabbit ciliary epithelial potentials in vitro.Am. J. Physiol. 50:855–861

    Google Scholar 

  40. Miyake, M., Kurihara, K. 1983. Resting potential of the mouse neuroblastoma cells. I. The presence of K+ channels activated at high K+ concentration but closed at low K+ concentration including the physiological concentration.Biochim. Biophys. Acta 762:248–255

    PubMed  Google Scholar 

  41. Paulmichl, M., Gstraunthaler, G., Lang, F. 1985. Electrical properties of Madin-Darby canine kidney cells. Effects of extracellular potassium and bicarbonate.Pfluegers Arch. 405:102–107

    Google Scholar 

  42. Pesin, R.P., Candia, O.A. 1982/83. Na+ and Cl fluxes, and effects of pharmacological agents on the short-circuit current of the isolated rabbit iris-ciliary body.Curr. Eye Res. 2:815–827

    Google Scholar 

  43. Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  44. Proverbio, F., Whittembury, G. 1975. Cell electrical potentials during enhanced sodium extrusion in guinea-pig kidney cortex slices.J. Physiol. (London) 250:559–578

    Google Scholar 

  45. Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434

    Google Scholar 

  46. Sackin, H., Boulpaep, E.L. 1981. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport.Am. J. Physiol. 241:F540-F555

    PubMed  Google Scholar 

  47. Saito, Y., Itoi, K., Horiuchi, K., Watanabe, T. 1980. Mode of action of furosemide on the chloride-dependent short-circuit current across the ciliary body epithelium of toad eyes.J. Membrane Biol. 53:85–93

    Google Scholar 

  48. Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    PubMed  Google Scholar 

  49. Schwartz, M., Carrasquer, G., Rehm, W.S. 1984. Potential difference responses due to K+, Na+, and Cl changes in bullfrog antrum with and without HCO 3 .Biochim. Biophys. Acta 769:105–116

    PubMed  Google Scholar 

  50. Skou, J.C. 1975. The (Na++K+)-activated enzyme system and its relationship to transport of sodium and potassium.Q. Rev. Biophys. 7:401–434

    Google Scholar 

  51. Wiederholt, M., Zadunaisky, J.A. 1986. Membrane potentials and intracellular chloride activity in the ciliary body of the shark.Pfluegers Arch. 407(Suppl. 2): S112–115

    Google Scholar 

  52. Wiederholt, M., Zadunaisky, J.A. 1987. Effect of ouabain and furosemide on transepithelial electrical parameters of the isolated shark ciliary epithelium.Invest. Ophthalmol. Vis. Sci. (in press)

  53. Zadunaisky, J.A. 1978. Transport in eye epithelia: Ciliary body and retina pigment epithelium.In: Membrane transport in biology. III. Transport across multi-membrane systems. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. pp. 337–354. Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbig, H., Korbmacher, C. & Wiederholt, M. K+-conductance and electrogenic Na+/K+ transport of cultured bovine pigmented ciliary epithelium. J. Membrain Biol. 99, 173–186 (1987). https://doi.org/10.1007/BF01995698

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995698

Key Words

Navigation