Skip to main content

Volume Regulation in Epithelia

  • Chapter
  • First Online:
Basic Epithelial Ion Transport Principles and Function

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Polarized epithelia generate regulated water flows and solute fluxes for serving extracellular homeostasis, which imposes changes in epithelial water volume and osmolyte concentrations that would be critical to normal function if not regulated. The studies have been challenged by the fact that epithelia may contain more than one cell type, and by the large osmotic permeability of some epithelial membranes that presupposes successful elimination of unstirred layer effects following aniso-osmotic perturbations.

Illustrated by several examples applying a range of methods, we review studies showing that volume regulation is governed by principles similar to non-polarized cells by having acquired well-developed regulatory volume decrease (RVD) and regulatory volume increase (RVI). RVI may not be seen unless the cell has undergone a prior RVD. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared to amphibian skin and mammalian cortical collecting tubule of low and intermediate osmotic permeability. Cross talk between entrance and exit mechanisms interferes with volume regulation both at aniso-osmotic and isosmotic volume perturbations. For example, the inevitable volume increase resulting from Na+/K+ pump arrest is delayed by inhibition of Na+ and K+ leak permeabilities. This may even be preceded by a transient volume decrease associated with a reduction of the cytosolic Cl pool if kept above equilibrium by downhill Na+ entrance. It has been proposed that cell volume regulation is an intrinsic function of isoosmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for amphibian skin epithelium and submucosal glands in which all major ion transporters and channels including the Na+ recirculation mechanisms have been identified.

A large number of transporters and ion channels involved in volume regulation have been cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusively to serve volume regulation. This is contrary to several subfamilies of K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell volume regulation. In the same cell, these functions may be maintained by different ion pathways that are separately regulated. RVD is often preceded by an increase in cytosolic free Ca2+ probably via influx through TRP channels and/or release from intracellular stores. Cell volume regulation is associated with specific ATP release mechanisms and involves mitogen-activated protein kinases, WNKs, and Ste20-related kinases that are modulated by osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Zardoya R (2012) LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioassays 34:551–560

    Article  CAS  Google Scholar 

  • Agre P, Christensen EI, Smith BL, Nielsen S (1993a) Distribution of the aquaporin CHIP in secretory and resorbtive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  PubMed  PubMed Central  Google Scholar 

  • Agre P, Knepper MA, Christensen EI, Smith BL, Nielsen S (1993b) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    Article  PubMed  Google Scholar 

  • Akita T, Fedorovich SV, Okada Y (2011) Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell Physiol Biochem 28:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Almaca J, Tian YM, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpern RJ (1987) Apical membrane chloride base-exchange in the rat proximal convoluted tubule. J Clin Invest 79:1026–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenberg GA, Reuss L (2013) Mechanisms of water transport across cell membranes and epithelia. In: Alpern RJ, Caplan M, Moe OW (eds) Seldin and Giebisch’s the kidney physiology and pathophysiology. Elsevier, Academic Press, pp 95–120

    Google Scholar 

  • Anazco C, Pena-Munzenmayer G, Araya C, Cid LP, Sepulveda FV, Niemeyer MI (2013) G protein modulation of K2P potassium channel TASK-2: a role of basic residues in the C terminus domain. Pflugers Arch 465:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Andersen HK, Urbach V, Van Kerkhove E, Prosser E, Harvey BJ (1994) Maxi K+ channels in the basolateral membrane of the exocrine frog skin gland regulated by intracellular calcium and pH. Pflugers Arch 431:52–65

    Article  Google Scholar 

  • Andronic J, Bobak N, Bittner S, Ehling P, Kleinschnitz C, Herrmann AM, Zimmermann H, Sauer M, Wiendl H, Budde T, Meuth SG, Sukhorukov VL (2013) Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes. Biochim Biophys Acta 1828:699–707

    Article  CAS  PubMed  Google Scholar 

  • Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Cell Physiol Cell Physiol 301:F1143–F1159

    Article  CAS  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde MA (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279:54062–54068

    Article  CAS  PubMed  Google Scholar 

  • Artym VV, Petty HR (2002) Molecular proximity of Kv1.3 voltage-gated potassium channels and beta(1)-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J Gen Physiol 120:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attaphitaya S, Nehrke K, Melvin JE (2001) Acute inhibition of brain-specific Na+/H+ exchanger isoform 5 by protein kinases A and C and cell shrinkage. Am J Physiol Cell Physiol 281:C1146–C1157

    Article  CAS  PubMed  Google Scholar 

  • Bachmann O, Heinzmann A, Mack A, Manns MP, Seidler U (2007) Mechanisms of secretion-associated shrinkage and volume recovery in cultured rabbit parietal cells. Am J Physiol Gastrointest Liver 292:G711–G717

    Article  CAS  Google Scholar 

  • Bachmann O, Juric M, Seidler U, Manns MP, Yu H (2011) Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol 201:33–46

    Article  CAS  Google Scholar 

  • Bagnasco S, Balaban RS, Fales HM, Yang YM, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261:5872–5877

    CAS  PubMed  Google Scholar 

  • Bahn YS, Kojima K, Cox GM, Heitman J (2006) A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 17:3122–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn YS, Xue CY, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Burg MB (1987) Osmotically active organic solutes in the renal inner medulla. Kidney Int 31:562–564

    Article  CAS  PubMed  Google Scholar 

  • Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck JS, Potts DJ (1990) Cell swelling, cotransport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J Physiol 425:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, Melvin JE (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 279:47681–47687

    Article  CAS  PubMed  Google Scholar 

  • Bellantuono V, Cassano G, Lippe C (2008) The adrenergic receptor substypes in frog (Rana esculenta) skin. Comp Biochem Physiol C Toxicol Pharmacol 148:160–164

    Article  PubMed  CAS  Google Scholar 

  • Bittner S, Bobak N, Herrmann AM, Gobel K, Meuth P, Hohn KG, Stenner MP, Budde T, Wiendl H, Meuth SG (2010) Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann Neurol 68:58–69

    Article  CAS  PubMed  Google Scholar 

  • Bobak N, Bittner S, Andronic J, Hartmann S, Muhlpfordt F, Schneider-Hohendorf T, Wolf K, Schmelter C, Gobel K, Meuth P, Zimmermann H, Doring F, Wischmeyer E, Budde T, Wiendl H, Meuth SG, Sukhorukov VL (2011) Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochim Biophys Acta 1808:2036–2044

    Article  CAS  PubMed  Google Scholar 

  • Boese SH, Kinne RK, Wehner F (1996) Single channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells. Am J Physiol Renal Physiol 271:F1224–F1233

    Article  CAS  Google Scholar 

  • Bookstein C, Musch MW, Depaoli A, Xie Y, Villereal M, Rao MC, Chang EB (1994) A unique sodium-hydrogen exchange isoform (Nhe-4) of the inner medulla of the rat-kidney is induced by hyperosmolarity. J Biol Chem 269:29704–29709

    CAS  PubMed  Google Scholar 

  • Boucher RC (1994) Human airway ion transport. Part I. Am J Respir Crit Care 150:271–281

    Article  CAS  Google Scholar 

  • Boucher RC (1999) Molecular insights into the physiology of the 'thin film' of airway surface liquid. J Physiol 516:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pflugers Arch 445:495–498

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology 28:318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browe DM, Baumgarten CM (2004) Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta 1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol 124:273–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB (2000) Macromolecular crowding as a cell volume sensor. Cell Physiol Biochem 10:251–256

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Knepper MA (1986) Single tubule perfusion techniques. Kidney Int 30:166–170

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Kwon ED, Kultz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59:437–455

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  CAS  PubMed  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  CAS  PubMed  Google Scholar 

  • Cala PM (1980) Volume regulation by amphiuma red-blood-cells - nature of the ion flux pathways. Fed Proc 39:379–379

    Google Scholar 

  • Calderone V (2002) Large-conductance, Ca2+-activated K+ channels: function, pharmacology and drugs. Curr Med Chem 9:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Cantiello HF, Patenaude CR, Ausiello DA (1989) G-protein subunit, alpha-I-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial-cell line, A6. J Biol Chem 264:20867–20870

    CAS  PubMed  Google Scholar 

  • Carpi-Medina P, Whittembury G (1988) Comparison of transcellular and transepithelial water osmotic permeabilities (Pos) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch 412:66–74

    Article  CAS  PubMed  Google Scholar 

  • Carpi-Medina P, Gonzáles E, Whittembury G (1983) Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am J Phys 244:F554–F563

    CAS  Google Scholar 

  • Carpi-Medina P, Lindemann B, Gonzáles E, Whittembury G (1984) The continous measurement of tubular volume changes in response to step changes in contraluminal osmolarity. Pflugers Arch 400:343–348

    Article  CAS  PubMed  Google Scholar 

  • Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflugers Arch 399:259–265

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Phys 257:C159–C173

    Article  CAS  Google Scholar 

  • Chase HS, Alawqati Q (1983) Calcium reduces the sodium permeability of luminal membrane-vesicles from toad bladder - studies using a fast-reaction apparatus. J Gen Physiol 81:643–665

    Article  CAS  PubMed  Google Scholar 

  • Choe K, Strange K (2009) Volume regulation and osmosensing in animal cells. In: Evans DH (ed) Osmotic and ionic regulation cells and animals. CRC Press, Boca Raton, pp 37–67

    Google Scholar 

  • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    Article  CAS  PubMed  Google Scholar 

  • Cid LP, Roa-Rojas HA, Niemeyer MI, Gonzalez W, Araki M, Araki K, Sepulveda FV (2013) TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Front Physiol 4:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen DM (2005) TRPV4 and the mammalian kidney. Pflugers Arch 451:168–175

    Article  CAS  PubMed  Google Scholar 

  • Cook DI, Van Lennep EW, Roberts ML, Young JA (1994) Secretion by the major salivary glands. In: Physiology of the gastrointestial tract, pp 1061–1117

    Google Scholar 

  • Copp J, Wiley S, Ward MW, van der Geer P (2005) Hypertonic shock inhibits growth factor receptor signaling, induces caspase-3 activation, and causes reversible fragmentation of the mitochondrial network. Am J Physiol Cell Physiol 288:C403–C415

    Article  CAS  PubMed  Google Scholar 

  • Cotton CU, Weinstein AM, Reuss L (1989) Osmotic water permeability of Necturus gallbladder epithelium. J Gen Physiol 93:649–679

    Article  CAS  PubMed  Google Scholar 

  • Curran PF (1960) Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol 43:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dartsch PC, Kolb HA, Beckmann M, Lang F (1994) Morphological alterations and cytoskeletal reorganization in opossum kidney (Ok) cells during osmotic swelling and volume regulation. Histochemistry 102:69–75

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Finn AL (1982) Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216:525–527

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Finn AL (1985) Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol Cell Physiol 249:C304–C312

    Article  CAS  Google Scholar 

  • Delpire E (2009) The mammalian family of sterile 20p-like protein kinases. Pflugers Arch 458:953–967

    Article  CAS  PubMed  Google Scholar 

  • Delpire E, Austin TM (2010) Kinase regulation of Na+-K+-2Cl cotransport in primary afferent neurons. J Physiol 588:3365–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devor DC, Frizzell RA (1993) Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells. Am J Physiol Cell Physiol 265:C1271–C1280

    Article  CAS  Google Scholar 

  • Di Ciano-Oliveira C, Sirokmany G, Szaszi K, Arthur WT, Masszi A, Peterson M, Rotstein OD, Kapus A (2003) Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation. Am J Physiol Cell Physiol 285:C555–C566

    Article  PubMed  Google Scholar 

  • Di Ciano-Oliveira C, Thirone ACP, Szaszi K, Kapus A (2006) Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol 187:257–272

    Article  CAS  Google Scholar 

  • Diamond JM (1964) Transport of salt and water in rabbit and Guinea pig gallbladder. J Gen Physiol 48:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond JM (1982) Trans-cellular cross-talk between epithelial-cell membranes. Nature 300:683–685

    Article  CAS  PubMed  Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donowitz M, Tse CM, Fuster D (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Asp Med 34:236–251

    Article  CAS  Google Scholar 

  • Dörge A, Rick R, Beck F-X, Thurau K (1985) Cl transport across the basolateral membrane in frog skin epithelium. Pflugers Arch 405(Suppl 1):S8–S11

    Article  PubMed  Google Scholar 

  • Douglas IJ, Brown PD (1996) Regulatory volume increase in rat lacrimal gland acinar cells. J Membr Biol 150:209–217

    Article  CAS  PubMed  Google Scholar 

  • Dube L, Parent L, Sauve R (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am J Physiol Renal Physiol 259:F348–F356

    Article  CAS  Google Scholar 

  • Eggermont J, Trouet D, Carton I, Nilius B (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys 35:263–274

    Article  CAS  PubMed  Google Scholar 

  • Elsing C, Gosch I, Hennings JC, Hubner CA, Herrmann T (2007) Mechanisms of hypotonic inhibition of the sodium, proton exchanger type 1 (NHE1) in a biliary epithelial cell line (Mz-Cha-1). Acta Physiol 190:199–208

    Article  CAS  Google Scholar 

  • Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  • Ericson A, Spring KR (1982a) Coupled NaCl entry into Necturus gallbladder epithelial-cells. Am J Physiol Cell Physiol 243:C140–C145

    Article  CAS  Google Scholar 

  • Ericson AC, Spring KR (1982b) Volume regulation by Necturus gallbladder - apical Na+-H+ and Cl-HCO3 exchange. Am J Physiol Cell Physiol 243:C146–C150

    Article  CAS  Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75:74–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RL, Park K, Turner RJ, Watson GE, Nguyen HV, Dennett MR, Hand AR, Flagella M, Shull GE, Melvin JE (2000) Severe impairment of salivation in Na+/K+/2Cl cotransporter (NKCC1)-deficient mice. J Biol Chem 275:26720–26726

    CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Eveloff JL, Calamia J (1986) Effect of osmolarity on cation fluxes in medullary thick ascending limb cells. Am J Phys 250:F176–F180

    CAS  Google Scholar 

  • Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potentialchannel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

    Article  CAS  PubMed  Google Scholar 

  • Farfel Z, Iaina A, Levi J, Gafni J (1978) Proximal renal tubular-acidosis - association with familial normaldosteronemic hyper-potassemia and hypertension. Arch Intern Med 138:1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez JM, Nobles M, Currid A, Vazquez E, Valverde MA (2002) Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 283:C1705–C1714

    Article  CAS  PubMed  Google Scholar 

  • Ferraris JD, Burg MB (2006) Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib Nephrol 152:125–141

    Article  CAS  PubMed  Google Scholar 

  • Fiol DF, Kultz D (2007) Osmotic stress sensing and signaling in fishes. FEBS J 274:5790–5798

    Article  CAS  PubMed  Google Scholar 

  • Fisher RS, Persson BE, Spring KR (1981) Epithelial cell volume regulation - bicarbonate dependence. Science 214:1357–1359

    Article  CAS  PubMed  Google Scholar 

  • Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946–26955

    Article  CAS  PubMed  Google Scholar 

  • Ford P, Rivarola V, Chara O, Blot-Chabaud M, Cluzeaud F, Farman N, Parisi M, Capurro C (2005) Volume regulation in cortical collecting duct cells: role of AQP2. Biol Cell 97:687–697

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215:164–166

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK, Bern HA, Machen TE, Connor M (1983) Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106:255–281

    CAS  PubMed  Google Scholar 

  • Foskett JK, Wong MMM, Sueaquan G, Robertson MA (1994) Isosmotic modulation of cell-volume and intracellular ion activities during stimulation of single exocrine cells. J Exp Zool 268:104–110

    Article  CAS  PubMed  Google Scholar 

  • Friis MB, Friborg CR, Schneider L, Nielsen MB, Lambert IH, Christensen ST, Hoffmann EK (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567:427–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Subramanya A, Rozansky D, Cohen DM (2006) WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol 290:F1305–F1314

    Article  CAS  PubMed  Google Scholar 

  • Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci U S A 101:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadsby DC, Nakao M (1989) Steady-state current-voltage relationship of the Na/K pump in Guinea-pig ventricular myocytes. J Gen Physiol 94:511–537

    Article  CAS  PubMed  Google Scholar 

  • Gaeggeler HP, Guillod Y, Loffing-Cueni D, Loffing J, Rossier BC (2011) Vasopressin-dependent coupling between sodium transport and water flow in a mouse cortical collecting duct cell line. Kidney Int 79:843–852

    Article  CAS  PubMed  Google Scholar 

  • Gagnon KB, Delpire E (2012) Molecular physiology of Spak and Osr1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 92:1577–1617

    Article  CAS  PubMed  Google Scholar 

  • Gagnon E, Forbush B, Flemmer AW, Caron L, Isenring P (2002) Functional and molecular characterization of the shark renal Na-K-Cl cotransporter: novel aspects. Am J Physiol Renal Physiol 283:F1046–F1055

    Article  PubMed  Google Scholar 

  • Galizia L, Pizzoni A, Fernandez J, Rivarola V, Capurro C, Ford P (2012) Functional interaction between AQP2 and TRPV4 in renal cells. J Cell Biochem 113:580–589

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardo F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnovskaya MN, Mukhin YV, Vlasova TM, Raymond JR (2003) Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 278:16908–16915

    Article  CAS  PubMed  Google Scholar 

  • Garvin JL, Spring KR (1992) Regulation of apical membrane ion transport in Necturus gallbladder. Am J Physiol Cell Physiol 263:C187–C193

    Article  CAS  Google Scholar 

  • Gelfand EW, Cheung RKK, Ha K, Grinstein S (1984) Volume regulation in lymphoid leukemia-cells and assignment of cell lineage. New Engl J Med 311:939–944

    Article  CAS  PubMed  Google Scholar 

  • Giraldez F, Ferreira KTG (1984) Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). Biochim Biophys Acta 769:625–628

    Article  CAS  PubMed  Google Scholar 

  • Golbang AP, Cope G, Hamad A, Murthy M, Liu CH, Cuthbert AW, O’Shaughnessy KM (2006) Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Renal Physiol 291:F1369–F1376

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles E, Carpi-Medina P, Linares H, Whittembury G (1984) Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch 402:337–339

    Article  PubMed  Google Scholar 

  • Gonzalez E, Carpimedina P, Whittembury G (1982) Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am J Physiol Renal Physiol 242:F321–F330

    Article  CAS  Google Scholar 

  • Grasset E, Gunter-Smith P, Schultz SG (1983) Effects of Na-coupled alanine transport on intracellular K-activities and the K-conductance of the basolateral membranes of Necturus small intestine. J Membr Biol 71:89–94

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Heitzmann D, Hug MJ, Hoffmann EK, Bleich M (1999) The Na+, 2Cl, K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage. Pflüg Arch Eur J Physiol 438:165–176

    Article  CAS  Google Scholar 

  • Grinstein S, Erlij D (1978) Intracellular calcium and regulation of sodium-transport in frog skin. Proc R Soc Ser B-Bio 202:353–360

    CAS  Google Scholar 

  • Grinstein S, Clarke CA, Rothstein A (1982) Increased anion permeability during volume regulation in human-lymphocytes. Philos Trans Roy Soc Ser B-Bio 299:509–518

    CAS  Google Scholar 

  • Grinstein S, Woodside M, Sardet C, Pouyssegur J, Rotin D (1992) Activation of the Na+/H+ antiporter during cell-volume regulation - evidence for a phosphorylation-independent mechanism. J Biol Chem 267:23823–23828

    CAS  PubMed  Google Scholar 

  • Grosell M (2007) Intestinal transport processes in marine fish osmoregulation. In: Baldisserotto B, Mancera JM, Kapoor BG (eds) Fish osmoregulation. Science Publishers, New Hamshire, pp 332–357

    Google Scholar 

  • Grubb BR, Schiretz FR, Boucher RC (1997) Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. Am J Physiol Cell Physiol 273:C21–C29

    Article  CAS  Google Scholar 

  • Grunnet M, Jespersen T, MacAulay N, Jorgensen NK, Schmitt N, Pongs O, Olesen SP, Klaerke DA (2003) KCNQ1 channels sense small changes in cell volume. J Physiol 549:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guggino WB, Oberleithner H, Giebisch G (1985) Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney. J Gen Physiol 86:31–58

    Article  CAS  PubMed  Google Scholar 

  • Guggino WB, Markakis D, Amzel LM (1990) Measurements of volume and shape changes in isolated tubules. Methods Enzymol 191:371–379

    Article  CAS  PubMed  Google Scholar 

  • Gunter-Smith PJ, Grasset E, Schultz SG (1982) Sodium-coupled amino-acid and sugar transport by Necturus small intestine - an equivalent electrical circuit analysis of a rheogenic cotransport system. J Membr Biol 66:25–39

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ (1992) Energization of sodium absorption by the H+-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol 172:289–309

    CAS  PubMed  Google Scholar 

  • Harvey BJ (1995) Cross-talk between sodium and potassium channels in tight epithelia. Kidney Int 48:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ, Ehrenfeld J (1988) Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductance in frog skin epithelium. J Gen Physiol 92:793–810

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ, Kernan RP (1984) Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. J Physiol 349:501–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey BJ, Thomas SR, Ehrenfeld J (1988) Intracellular pH controls cell membranes Na+ and K+ conductances and transport in frog skin epithelium. J Gen Physiol 92:767–791

    Article  CAS  PubMed  Google Scholar 

  • Hazama A, Okada Y (1990) Biphasic rises in cytosolic free Ca2+ in association with activation of K+ and Cl conductance during the regulatory volume decrease in cultured human epithelial-cells. Pflugers Arch Eur J Physiol 416:710–714

    Article  CAS  Google Scholar 

  • Hebert SC (1986a) Hypertonic cell-volume regulation in mouse thick limbs. 1. ADH dependency and nephron heterogeneity. Am J Physiol Cell Physiol 250:C907–C919

    Article  CAS  Google Scholar 

  • Hebert SC (1986b) Hypertonic cell-volume regulation in mouse thick limbs. 2. Na+-H+ and Cl-HCO3 exchange in basolateral membranes. Am J Physiol Cell Physiol 250:C920–C931

    Article  CAS  Google Scholar 

  • Hebert SC (1987) Volume regulation in renal epithelial-cells. Seminars Nephr 7:48–46

    CAS  Google Scholar 

  • Hebert SC, Mount DB, Gamba G (2004) Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch Eur J Physiol 447:580–593

    Article  CAS  Google Scholar 

  • Hendus-Altenburger R, Kragelund BB, Pedersen SF (2014) Structural dynamics and regulation of the mammalian SLC9A family of Na+/H+ exchangers. In: Bevensee MO (ed) Exchangers chapter 2: current topics in membranes, vol 73. Academic Press, Burlington, pp 69–148

    Google Scholar 

  • Henson JH, Roesener CD, Gaetano CJ, Mendola RJ, Forrest JN, Holy J, Kleinzeller A (1997) Confocal microscopic observation of cytoskeletal reorganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+. J Exp Zool 279:415–424

    Article  CAS  PubMed  Google Scholar 

  • Hillyard SD, Møbjerg N, Tanaka S, Larsen EH (2009) Osmotic and ion regulation in amphibians. In: Evans DH (ed) Osmotic and ionic regulation cells and animals. Taylor Francis Group, Boca Raton, pp 367–441

    Google Scholar 

  • Hoffmann EK (1978) Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumore cells. In: Jørgensen CB, Skadhauge E (eds) Proc Alfr Benzon Symp XI osmotic and volume regulation. Munksgaard, Copenhagen, pp 397–417

    Google Scholar 

  • Hoffmann EK (1982) Anion exchange and anion-cation co-transport systems in mammalian cells. Phil Trans R Soc Lond B Biol 299:519–535

    Article  CAS  Google Scholar 

  • Hoffmann EK, Pedersen SF (2007) Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells. Am J Physiol Cell Physiol 292:C1854–C1866

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Pedersen SF (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways. Acta Physiol 202:465–485

    Article  CAS  Google Scholar 

  • Hoffmann EK, Ussing HH (1992) Membrane mechanisms in volume regulation in vertebrane cells and epithelia. In: Giebisch G, Schafer JA, Ussing H, Kristensen P (eds) Membrane transport in biology. Springer, Cham, pp 317–399

    Chapter  Google Scholar 

  • Hoffmann EK, Simonsen LO, Sjøholm C (1979) Membrane potential, chloride exchange, and chloride conductance in ehrlich mouse ascites tumour cells. J Physiol 296:61–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann EK, Sjøholm C, Simonsen LO (1983) Na+, Cl co-transport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J Membr Biol 76:269–280

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO (1986) Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells. J Memb Biol 91:227–244

    Article  CAS  Google Scholar 

  • Hoffmann EK, Hoffmann E, Lang F, Zadunaisky JA (2002) Control of Cl transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. Biochim Biophys Acta 1566:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Schettino T, Marshall WS (2007) The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A 148:29–43

    Article  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Sorensen BH, Sauter DP, Lambert IH (2015) Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels 9:380–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Hougaard C, Niemeyer MI, Hoffmann EK, Sepulveda FV (2000) K+ currents activated by leukotriene D-4 or osmotic swelling in Ehrlich ascites tumour cells. Pflugers Arch Eur J Physiol 440:283–294

    CAS  Google Scholar 

  • Hougaard C, Klaerke DA, Hoffmann EK, Olesen SP, Jorgensen NK (2004) Modulation of KCNQ4 channel activity by changes in cell volume. Biochim Biophys Acta 1660:1–6

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Cha SK, Wang HR, Xie J, Cobb MH (2007) WNKs: protein kinases with a unique kinase domain. Exp Mol Med:565–573

    Google Scholar 

  • Hughes ALH, Pakhomova A, Brown PD (2010) Regulatory volume increase in epithelial cells isolated from the mouse fourth ventricle choroid plexus involves Na+-H+ exchange but not Na+-K+-2Cl cotransport. Brain Res 1323:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hyzinski-Garcia MC, Rudkouskaya A, Mongin AA (2014) LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J Physiol 592:4855–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Yoshiyama N (1988) Intracellular chloride activity of rabbit proximal straight tubule perfused in vitro. Am J Physiol Renal Physiol 255:F49–F56

    Article  CAS  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300:G82–G98

    Article  CAS  PubMed  Google Scholar 

  • Jensen LJ, Sørensen JN, Larsen EH, Willumsen NJ (1997) Proton pump activity of mitochondria-rich cells. The interpretation of external proton-concentration gradients. J Gen Physiol 109:73–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon US, Kim J-A, Sheen MR, Kwon HM (2006) How tonicity regulates genes: story of TonEBP transcriptional activator. Acta Physiol 187:241–247

    Article  CAS  Google Scholar 

  • Jørgensen NK, Christensen S, Harbak H, Brown AM, Lambert IH, Hoffmann EK (1997) On the role of calcium in the regularory volume decrease (RVD) response in Ehrlich mouse ascites tumor cells. J Membr Biol 157:281–299

    Article  PubMed  Google Scholar 

  • Jorgensen NK, Pedersen SF, Rasmussen HB, Grunnet M, Klaerke DA, Olesen SP (2003) Cell swelling activates cloned Ca2+-activated K+ channels: a role for the F-actin cytoskeleton. Biochim Biophys Acta Biomembr 1615:115–125

    Article  CAS  Google Scholar 

  • Juul CA, Grubb S, Poulsen KA, Kyed T, Hashem N, Lambert IH, Larsen EH, Hoffmann EK (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Arch Eur J Physiol 466:1899–1910

    Article  CAS  Google Scholar 

  • Kahle KT, Rinehart J, Ring A, Gimenez I, Gamba G, Hebert SC, Lifton RP (2006) WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology 21:326–335

    Article  CAS  PubMed  Google Scholar 

  • Kashgarian M, Biemesderfer D, Caplan M, Forbush B III (1985) Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int 28:899–913

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Romero MF (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay AR, Blaustein MP (2019) Evolution of our understanding of cell volume regulation by the pump-leak mechanism. J Gen Physiol 151(4):407–416. https://doi.org/10.1085/jgp.201812274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk KL, DiBona DR, Schafer JA (1987a) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol Renal Physiol 252:F933–F942

    Article  CAS  Google Scholar 

  • Kirk KL, Schafer JA, DiBona DR (1987b) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol Renal Physiol 252:F922–F932

    Article  CAS  Google Scholar 

  • Kirkegaard SS, Lambert IH, Gammeltoft S, Hoffmann EK (2010) Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. Am J Physiol Cell Physiol 299:C844–C853

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard SS, Wulff T, Gammeltoft S, Hoffmann EK (2013) KCNK5 is functionally down-regulated upon long-term hypotonicity in Ehrlich ascites tumor cells. Cell Physiol Biochem 32:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard SS, Strom PD, Gammeltoft S, Hansen AJ, Hoffmann EK (2016) The volume activated potassium channel KCNK5 is up-regulated in activated human T cells, but volume regulation is impaired. Cell Physiol Biochem 38:883–892

    Article  CAS  PubMed  Google Scholar 

  • Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 291:C757–C771

    Article  CAS  PubMed  Google Scholar 

  • Klausen TK, Janssens A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Nilius B (2014) Single point mutations of aromatic residues in transmembrane helices 5 and-6 differentially affect TRPV4 activation by 4 alpha-PDD and hypotonicity: implications for the role of the pore region in regulating TRPV4 activity. Cell Calcium 55:38–47

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, O’Neill WC (1995) Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport. Am J Phys 269:C1524–C1531

    Article  CAS  Google Scholar 

  • Kregenow FM (1971) The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol 58:396–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krump E, Nikitas K, Grinstein S (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem 272:17303–17311

    Article  CAS  PubMed  Google Scholar 

  • L’Hoste S, Barriere H, Belfodil R, Rubera I, Duranton C, Tauc M, Poujeol C, Barhanin J, Poujeol P (2007) Extracellular pH alkalinisation by Cl/HCO3 exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney. Am J Physiol Renal Physiol 292:F628–F638

    Article  PubMed  CAS  Google Scholar 

  • Lacroix J, Poet M, Huc L, Morello V, Djerbi N, Ragno M, Rissel M, Tekpli X, Gounon P, Lagadic-Gossmann D, Counillon L (2008) Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks. Biochemist 47:13674–13685

    Article  CAS  Google Scholar 

  • Lambert IH (1987) Effect of arachidonic acid, fatty acids, prostaglandins, and leukotrienes on volume regulation in Ehrlich ascites tumor cells. J Membr Biol 98:207–221

    Article  CAS  PubMed  Google Scholar 

  • Lambert IH, Hoffmann EK (1994) Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J Membr Biol 142:289–298

    Article  CAS  PubMed  Google Scholar 

  • Lambert IH, Hoffmann EK, Christensen P (1987) Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J Membr Biol 98:247–256

    Article  CAS  PubMed  Google Scholar 

  • Lang F (2013) Cell volume control. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney. Academic Press, Cambridge, MA, pp 121–141

    Chapter  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998a) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Volkl H (1998b) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8:1–45

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH (1973) Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin. In: Proc Alfred Benzon Symp V transport mechanisms in epithelia, pp 131–147

    Google Scholar 

  • Larsen EH (1988) NaCl transport in amphibian skin. In: NaCl transport in epithelia. Springer, Berlin

    Google Scholar 

  • Larsen EH (1991) Chloride transport by high-resistance heterocellular epithelia. Physiol Rev 71:235–283

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH (2009) Hans Henriksen Ussing 30 December 1911–22 December 2000. Biogr Mem Fellows Royal Soc 55:305–335

    Article  Google Scholar 

  • Larsen EH (2011) Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake. Acta Physiol 202:435–464

    Article  CAS  Google Scholar 

  • Larsen EH, Harvey BJ (1994) Chloride currents of single mitochondria-rich cells of toad skin epithelium. J Physiol 478:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen EH, Ramløv H (2013) Role of cutaneous surface fluid in frog osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 165:365–370

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Rasmussen BE (1982) Chloride channels in toad skin. Phil Trans R Soc Lond B Biol 299:413–434

    Article  CAS  Google Scholar 

  • Larsen EH, Sørensen JN (2019) Stationary and non-stationary ion- and water flux interactions in kidney proximal tubule. Mathematical analysis of isosmotic transport by a minimalistic model. Rev Physiol Biochem Pharm DOI: 10.1007/112_2019_16

    Google Scholar 

  • Larsen EH, Ussing HH, Spring KR (1987) Ion transport by mitochondria-rich cells in toad skin. J Membr Biol 99:25–40

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Sørensen JB, Sørensen JN (2000) A mathematical model of solute coupled water transport in toad intestine incorporating recirculation of the actively transported solute. J Gen Physiol 116:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen EH, Amstrup J, Willumsen NJ (2003) β-Adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium. Biochim Biophys Acta 1618:140–152

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Willumsen NJ, Møbjerg N, Sørensen JN (2009) The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol 195:171–186

    Article  CAS  Google Scholar 

  • Larsen EH, Deaton LE, Onken H, O’Donnell M, Grosell M, Dantzler WH, Weihrauch D (2014) Osmoregulation and excretion. Compr Physiol 4:405–573

    Article  PubMed  Google Scholar 

  • Larson M, Spring KR (1983) Bumetanide inhibition of NaCl transport by Necturus gallbladder. J Membr Biol 74:123–129

    Article  CAS  PubMed  Google Scholar 

  • Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder - basolateral KCl exit. J Membr Biol 81:219–232

    Article  CAS  PubMed  Google Scholar 

  • Lauf PK, Misri S, Chimote AA, Adragna NC (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. Am J Physiol Cell Physiol 294:C820–C832

    Article  CAS  PubMed  Google Scholar 

  • Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  CAS  PubMed  Google Scholar 

  • Leaf A (1959) Maintenance of concentration gradients and regulation of cell volume. Ann N Y Acad Sci 72:396–404

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Foskett JK (2010) cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120:3137–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med 191:1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis A, Di Ciano C, Rotstein OD, Kapus A (2002) Osmotic stress activates Rac and Cdc42 in neutrophils: role in hypertonicity-induced actin polymerization. Am J Physiol Cell Physiol 282:C271–C279

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ault A, Malone CL, Raitt D, Dean S, Johnston LH, Deschenes RJ, Fassler JS (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17:6952–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedtke CM, Cole TS (2002) Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochem Biophys Acta Mol Cell Res 1589:77–88

    Article  CAS  Google Scholar 

  • Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Schettino T (2006) The Na+-K+-2Cl cotransporter and the osmotic stress response in a model salt transport epithelium. Acta Physiol 187:115–124

    Article  CAS  Google Scholar 

  • Lionetto MG, Giordano ME, Nicolardi G, Schettino T (2001) Hypertonicity stimulates cl- transport in the intestine of fresh water acclimated eel, Anguilla anguilla. Cell Physiol Biochem 11:41–54

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Pedersen SF, Hoffmann EK, Giordano ME, Schettino T (2002) Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium. Cell Physiol Biochem 12:163–163

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Rizzello A, Giordano ME, Maffia M, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T (2008) Molecular and functional expression of high conductance Ca2+ activated K+ channels in the eel intestinal epithelium. Cell Physiol Biochem 21:373–384

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity - concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  PubMed  Google Scholar 

  • Lock H, Valverde MA (2000) Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells. J Biol Chem 275:34849–34852

    Article  CAS  PubMed  Google Scholar 

  • Lopes AG, Amzel LM, Markakis D, Guggino WB (1988) Cell volume regulation by the thin descending limb og Henle’s loop. Proc Natl Acad Sci U S A 85:2873–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57:510–573

    Article  CAS  PubMed  Google Scholar 

  • Macleod RJ, Hamilton JR (1990) Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport. Am J Physiol Gastrointest Liver Physiol 258:G665–G674

    Article  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1991) Volume regulation initiated by Na+-nutrient cotransport in isolated mammalian villus enterocytes. Am J Physiol Gastrointest Liver Physiol 260:G26–G33

    Article  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1999) Ca2+/calmodulin kinase II and decreases in intracellular pH are required to activate K+ channels after substantial swelling in villus epithelial cells. J Membr Biol 172:59–66

    Article  CAS  PubMed  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999a) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999b) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133

    Article  CAS  PubMed  Google Scholar 

  • Manganel M, Turner RJ (1991) Rapid secretagogue-induced activation of Na+/H+ exchange in rat parotid acinar-cells - possible interrelationship between volume regulation and stimulus-secretion coupling. J Biol Chem 266:10182–10188

    CAS  PubMed  Google Scholar 

  • Markadieu N, Delpire E (2014) Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch Eur J Physiol 466:91–105

    Article  CAS  Google Scholar 

  • Marsh DJ, Spring KR (1985) Polarity of volume-regulatory increase by Necturus gallbladder epithelium. Am J Phys 249:C471–C475

    Article  CAS  Google Scholar 

  • Marsh DJ, Jensen PK, Spring KR (1985) Computer-based determination of size and shape in living cells. J Microsc 137:281–292

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS (2011) Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol 202:487–499

    Article  CAS  Google Scholar 

  • Marshall WS, Grosell M (2005) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • Marshall WS, Bryson SE, Luby T (2000) Control of epithelial Cl secretion by basolateral osmolality in the euryhaline teleost Fundulus heteroclitus. J Exp Biol 203:1897–1905

    CAS  PubMed  Google Scholar 

  • Marshall WS, Ossum CG, Hoffmann EK (2005) Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. J Exp Biol 208:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS, Katoh F, Main HP, Sers N, Cozzi RRF (2008) Focal adhesion kinase and β1 integrin regulation of Na+, K+, 2Cl cotransporter in osmosensing ion transporting cells of killifish, Fundulus heteroclitus. Comp Biochem Phys A 150:288–300

    Article  CAS  Google Scholar 

  • Matsumura Y, Cohen B, Guggino WB, Giebisch G (1984) Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol 79:153–161

    Article  CAS  PubMed  Google Scholar 

  • Maunsbach AB (1966) Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastr Res 16:239–258

    Article  CAS  Google Scholar 

  • Maunsbach AB, Boulpaep EL (1991) Immunoelectron microscope localization of Na,K-ATPase in transport pathways in proximal tubule epithelium. Micr Microscop Acta 22:55–56

    Article  Google Scholar 

  • McCormick JA, Ellison DH (2011) The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91:177–219

    Article  CAS  PubMed  Google Scholar 

  • Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  CAS  PubMed  Google Scholar 

  • Messner G, Wang W, Paulmichl M, Oberleithner H, Lang F (1985) Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflugers Arch Eur J Physiol 404:131–137

    Article  CAS  Google Scholar 

  • Meyer K, Korbmacher C (1996) Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells. J Gen Physiol 108:177–193

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Le Gall C, Harvey BJ, Thomas S (1999) Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. J Physiol 515:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JW (1985) Ion transport across the exocrine glands of the frog skin. Pflüg Arch Eur J Physiol 405(suppl 1):S44–S49

    Article  Google Scholar 

  • Mills JW, DiBona DR (1978) Distribution of Na+-pump sites in the frog gallbladder. Nature 271:273–275

    Article  CAS  PubMed  Google Scholar 

  • Mills JW, Ernst SA (1975) Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta 375:268–273

    Article  CAS  PubMed  Google Scholar 

  • Mills JW, Ernst SA, DiBona DR (1977) Localization of Na+-pump sites in frog skin. J Cell Biol 73:88–110

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2006) Macromolecular crowding. Curr Biol 16:R269–R271

    Article  CAS  PubMed  Google Scholar 

  • Moeckel GW, Zhang L, Chen X, Rossini M, Zent R, Pozzi A (2006) Role of integrin alpha1beta1 in the regulation of renal medullary osmolyte concentration. Am J Physiol Renal Physiol 290:F223–F231

    Article  CAS  PubMed  Google Scholar 

  • Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen SJ, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou HM, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montroserafizadeh C, Guggino WB (1990) Cell-volume regulation in the nephron. Annu Rev Physiol 52:761–772

    Article  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB, Montrose MH (1991) Cellular differentiation regulates expression of Cl transport and cystic fibrosis transmembrane conductance regulator mRNA in human intestinal cells. J Biol Chem 266:4495–4499

    CAS  PubMed  Google Scholar 

  • Moore-Hoon ML, Turner RJ (2000) The structural unit of the secretory Na+-K+-2Cl cotransporter (NKCCl) is a homodimer. Biochemist 39:3718–3724

    Article  CAS  Google Scholar 

  • Nauntofte B, Dissing S (1988) Cholinergic-induced electrolyte transport in rat parotid acini. Comp Biochem Physiol 90A:739–746

    Article  CAS  Google Scholar 

  • Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci U S A 99:9231–9236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard S, Larsen EH, Ussing HH (1999) Sodium recirculation and isotonic transport in toad small intestine. J Membr Biol 168:241–251

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Agre P (1995) The aquaporin family of water channels in kidney. Kidney Int 48:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Larsen EH (2007) Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport. Comp Bioch Physiol Mol Integr Physiol 148A:64–71

    Article  CAS  Google Scholar 

  • Nielsen MS, Nielsen R (1999) Effect of carbachol and prostaglandin E2 on chloride secretion and signal transduction in the exocrine glands of frog skin (Rana esculenta). Pflugers Arch Eur J Physiol 438:732–740

    CAS  Google Scholar 

  • Nielsen S, Chou C-L, Marples D, Christensen EI, Kishore BM, Knepper M (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Kwon T-H, Dimke H, Skott M, Frøkiær J (2013) Aquaporin water channels in mammalian kidney. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney. Academic Press, Cambridge, MA, pp 1405–1439

    Chapter  Google Scholar 

  • Niemeyer MI, Cid LP, Barros LF, Sepulveda FV (2001a) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Sepulveda FV (2001b) K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart. Comp Biochem Physiol A Mol Integr Physiol 130:565–575

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Pena-Munzenmayer G, Sepulveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285:16467–16475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Bio 68:69–119

    Article  CAS  Google Scholar 

  • Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J Physiol 516:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  • Novak I (2011) Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol 202:501–522

    Article  CAS  Google Scholar 

  • Novak I, Greger R (1988) Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport. Pflugers Arch Eur J Physiol 411:546–553

    Article  CAS  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292:C460–C467

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JA, Walters RJ, Valverde MA, Sepulveda FV (1993) Regulatory volume increase after hypertonicity- or vasoactive-intestinal-peptide-induced cell-volume decrease in small-intestinal crypts is dependent on Na+-K+-2Cl cotransport. Pflugers Arch Eur J Physiol 423:67–73

    Article  Google Scholar 

  • O’Brien JA, Walters RJ, Sepulveda FV (1991) Regulatory volume decrease in small intestinal crypts is inhibited by K+ and Cl channel blockers. Biochim Biophys Acta 1070:501–504

    Article  PubMed  Google Scholar 

  • Ogushi Y, Kitagawa D, Hasegawa T, Suzuki M, Tanaka S (2010) Correlation between aquaporin and water permeability in response to vasotocin, hydrin and β-adrenergic effectors in the ventral pelvic skin of the tree frog Hyla japonica. J Exp Biol 213:288–294

    Article  CAS  PubMed  Google Scholar 

  • Okada Y (1997) Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. Am J Physiol Cell Physiol 273:C755–C789

    Article  CAS  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ (2019) Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties. Pharmacol Rev 71:49–88

    Article  CAS  PubMed  Google Scholar 

  • Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch Eur J Physiol 447:549–565

    Article  CAS  Google Scholar 

  • Orlowski J, Grinstein S (2011) Na+/H+ exchangers. Compr Physiol 1:2083–2100

    PubMed  Google Scholar 

  • Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Capo-Aponte JE, Zhang F, Wang Z, Pokorny KS, Reinach PS (2007) Differential dependence of regulatory volume decrease behavior in rabbit corneal epithelial cells on MAPK superfamily activation. Exp Eye Res 84:978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang V, Counillon L, Lagadic-Gossmann D, Poet M, Lacroix J, Sergent O, Khan R, Rauch C (2012) On the role of the difference in surface tensions involved in the allosteric regulation of NHE-1 induced by low to mild osmotic pressure, membrane tension and lipid asymmetry. Cell Biochem Biophys 63:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Hong JH, Ohana E, Muallem S (2012) The WNK/SPAK and IRBIT/PP1 pathways in epithelial fluid and electrolyte transport. Physiology 27:291–299

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Hoffmann EK (2002) Possible interrelationship between changes in F-actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells. Exp Cell Res 277:57–73

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Prenen J, Droogmans G, Hoffmann EK, Nilius B (1998) Separate swelling- and Ca2+-activated anion currents in Ehrlich ascites tumor cells. J Membr Biol 163:97–110

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Beisner KH, Hougaard C, Willumsen BM, Lambert IH, Hoffmann EK (2002a) Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J Physiol 541:779–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SF, Varming C, Christensen ST, Hoffmann EK (2002b) Mechanisms of activation of NHE by cell shrinkage and by calyculin A in ehrlich ascites tumor cells. J Membr Biol 189:67–81

    Article  CAS  Google Scholar 

  • Pedersen SF, Kapus A, Hoffmann EK (2011) Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 22:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Peng JB, Warnock DG (2007) WNK4-mediated regulation of renal ion transport proteins. Am J Physiol Renal Physiol 293:F961–F973

    Article  CAS  PubMed  Google Scholar 

  • Persson B-E, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeablity and volume regulation. J Gen Physiol 79:481–505

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH (1992) Stimulus-secretion coupling - cytoplasmic calcium signals and the control of ion channels in exocrine acinar-cells. J Physiol 448:1–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen OH (1993) Regulation of isotonic fluid secretion in exocrine acini. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proc Alfred Benzon Symp 34 isotonic transport in leaky epithelia. Munksgaard, Copenhagen, pp 103–146

    Google Scholar 

  • Petersen OH, Gallacher DV (1988) Electrophysiology of pancreatic and salivary acinar cells. Annu Rev Physiol 50:65–80

    Article  CAS  PubMed  Google Scholar 

  • Piechotta K, Garbarini N, England R, Delpire E (2003) Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl cotransporter in the nervous system - evidence for a scaffolding role of the kinase. J Biol Chem 278:52848–52856

    Article  CAS  PubMed  Google Scholar 

  • Pihakaski-Maunsbach K, Vorum H, Locke EM, Garty H, Karlish SJ, Maunsbach AB (2003) Immunocytochemical localization of Na,K-ATPase gamma subunit and CHIF in inner medulla of rat kidney. Ann N Y Acad Sci 986:401–409

    Article  CAS  PubMed  Google Scholar 

  • Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ (2015) Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 34:2993–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pochynyuk O, Zaika O, O’Neil RG, Mamenko M (2013) Novel insights into TRPV4 function in the kidney. Pflugers Arch Eur J Physiol 465:177–186

    Article  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186:6553–6561

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LJ, Muller HS, Jorgensen B, Pedersen SF, Hoffmann EK (2015) Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells. Am J Physiol Cell Physiol 308:C101–C110

    Article  CAS  PubMed  Google Scholar 

  • Reuss L (1985) Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci U S A 82:6014–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273:30863–30869

    Article  CAS  PubMed  Google Scholar 

  • Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–3304

    Article  CAS  PubMed  Google Scholar 

  • Rick R, Dörge A, Von Arnim E, Thurau K (1978) Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol 39:313–331

    Article  CAS  PubMed  Google Scholar 

  • Rick R, Roloff C, Dörge A, Beck F-X, Thurau K (1984) Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media. J Membr Biol 78:129–145

    Article  CAS  PubMed  Google Scholar 

  • Rigor RR, Damoc C, Phinney BS, Cala PM (2011) Phosphorylation and activation of the plasma membrane Na+/H+ exchanger (NHE1) during osmotic cell shrinkage. PLoS One 6:e29210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MA, Foskett JK (1994) Na+ transport pathways in secretory acinar-cells - membrane cross-talk mediated by [Cl]I. Am J Physiol Cell Physiol 267:C146–C156

    Article  CAS  Google Scholar 

  • Roger F, Martin PY, Rousselot M, Favre H, Feraille E (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop - requirement of p38 kinase for the regulatory volume increase response. J Biol Chem 274:4103–34110

    Article  Google Scholar 

  • Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) TMEM16A encodes the Ca2+-activated Cl channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:2990–13001

    Article  CAS  Google Scholar 

  • Rotin D, Grinstein S (1989) Impaired cell-volume regulation in Na+-H+ exchange-deficient mutants. Am J Phys 257:C1158–C1165

    Article  CAS  Google Scholar 

  • Sabirov RS, Okada Y (2005) ATP release via anion channels. Purinerg Sign 1:311–328

    Article  CAS  Google Scholar 

  • Sarkadi B, Attisano L, Grinstein S, Buchwald M, Rothstein A (1984) Volume regulation of Chinese-Hamster ovary cells in anisoosmotic media. Biochim Biophys Acta 774:159–168

    Article  CAS  PubMed  Google Scholar 

  • Schafer JA (1990) Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule. Annu Rev Physiol 52:709–726

    Article  CAS  PubMed  Google Scholar 

  • Schafer JA (1993) The rat collecting duct as an isosmotic volume reabsorber. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proc Alfred Benzon Symp 34 isotonic transport in leaky epithelia. Munksgaard, Copenhagen, pp 339–354

    Google Scholar 

  • Schafer JA, Patlak CS, Troutman SL, Andreoli TE (1978) Volume absorption in the parts recta II. Hydraulic conductivity coefficient. Am J Physiol Renal Physiol 234:F340–F348

    Article  CAS  Google Scholar 

  • Schatzmann HJ, Windhager EE, Solomon AK (1958) Single proximal tubules of the Necturus kidney. II. Effect of 2, 4-dinitro-phenol and ouabain on water reabsorption. Am J Phys 195:570–574

    Article  CAS  Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1991) Basolateral transport pathways for K+ and Cl in rabbit proximal tubule: effects on cell volume. Am J Physiol Renal Physiol 260:F101–F109

    Article  CAS  Google Scholar 

  • Schlatter E, Greger R, Schafer JA (1990) Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl transport. Pflugers Archiv Eur J Physiol 417:317–323

    Article  CAS  Google Scholar 

  • Schnermann J, Chou C-L, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol Renal Physiol 10:F579–F590

    Article  Google Scholar 

  • Schultz SG (1992) Membrane crosstalk in sodium-absorbing epithelial cells. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 287–299

    Google Scholar 

  • Schultz SG, Dubinsky WP (2001) Sodium absorption, volume control and potassium channels: a tribute to a great biologist. J Membr Biol 184:255–261

    Article  CAS  PubMed  Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    CAS  PubMed  Google Scholar 

  • Shimada-Shimizu N, Hisamitsu T, Nakamura TY, Hirayama N, Wakabayashi S (2014) Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds. Mol Pharmac 85:18–28

    Article  CAS  Google Scholar 

  • Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl channel. Proc Natl Acad Sci U S A 101:6770–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen JB, Larsen EH (1996) Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin. J Gen Physiol 108:421–433

    Article  PubMed  Google Scholar 

  • Sørensen JB, Larsen EH (1998) Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl channels activated by cyclic AMP. J Gen Physiol 112:19–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen JB, Larsen EH (1999) Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion. Pflugers Arch Eur J Physiol 439:101–112

    Article  Google Scholar 

  • Sørensen JB, Nielsen MS, Nielsen R, Larsen EH (1998) Luminal ion channels involved in isotonic secretion by Na+-recirculation in exocrine gland-acini. Roy Dan Acad Sci Lett Biol Ser 49:179–191

    Google Scholar 

  • Sørensen JB, Nielsen MS, Gudme CN, Larsen EH, Nielsen R (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch Eur J Physiol 442:1–11

    Article  CAS  Google Scholar 

  • Sorensen BH, Thorsteinsdottir UA, Lambert IH (2014) Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. Am J Phys 307:C1071–C1080

    Article  CAS  Google Scholar 

  • Sorensen BH, Rasmussen LJH, Broberg BS, Klausen TK, Sauter DPR, Lambert IH, Aspberg A, Hoffmann EK (2015) Integrin beta(1), osmosensing, and chemoresistance in mouse ehrlich carcinoma cells. Cell Physiol Biochem 36:111–132

    Article  CAS  PubMed  Google Scholar 

  • Speake T, Douglas IJ, Brown PD (1998) The role of calcium in the volume regulation of rat lacrimal acinar cells. J Membr Biol 164:283–291

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Hope A (1978) Size and shape of the lateral intercellular spaces in a living epithelium. Science 200:54–57

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Hope A (1979) Fluid transport and the dimensions of cell and interspaces of living Necturus gallbladder. J Gen Physiol 73:287–305

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Ussing HH (1986) The volume of mitochondria-rich cells of frog skin epithelium. J Membr Biol 92:21–26

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko A (2012) Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol 2:1541–1584

    PubMed  PubMed Central  Google Scholar 

  • Stauber T (2015) The volume-regulated anion channel is formed by LRRC8 heteromers - molecular identification and roles in membrane transport and physiology. Biol Chem 396:975–990

    Article  CAS  PubMed  Google Scholar 

  • Sten-Knudsen O (2002) Biological membranes. Theory of transport, potentials and electric impulses. Cambridge University Press, Cambridge

    Google Scholar 

  • Stirling CE (1972) Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoner LC, Morley GE (1995) Effect of basolateral or apical hyposmolarity on apical maxi-K channels of everted rat collecting tubule. Am J Physiol Renal Physiol 268:F569–F580

    Article  CAS  Google Scholar 

  • Strange K (1988) RVD in principal and intercalated cells of rabbit cortical collecting tubule. Am J Physiol Cell Physiol 255:C612–C621

    Article  CAS  Google Scholar 

  • Strange K (1989) Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J Memb Biol 107:249–261

    Article  CAS  Google Scholar 

  • Strange K (1990) Volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss. Am J Physiol Renal Physiol 258:F732–F740

    Article  CAS  Google Scholar 

  • Strange K, Spring K (1986) Methods for imaging renal tubule cells. Kid Intern 30:192–200

    Article  CAS  Google Scholar 

  • Strange K, Spring KR (1987a) Absence of significant cellular dilution during ADH-stimulated water reabsorption. Science 235:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Spring KR (1987b) Cell membrane water permeability of rabbit cortical collecting duct. J Membr Biol 96:27–43

    Article  CAS  PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  • Stutzin A, Hoffmann EK (2006) Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol 187:27–42

    Article  CAS  Google Scholar 

  • Takemura T, Sato F, Suzuki Y, Sato K (1991) Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells. J Membr Biol 119:211–219

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch - a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol Renal Physiol 257:F347–F352

    Article  CAS  Google Scholar 

  • Tarran R, Grubb BR, Gatzy JT, Davis CW, Boucher RC (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118:223–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol Renal Physiol 236:F505–F512

    Article  CAS  Google Scholar 

  • Tekpli X, Huc L, Lacroix J, Rissel M, Poet M, Noel J, Dimanche-Boitrel MT, Counillon L, Lagadic-Gossmann D (2008) Regulation of Na+/H+ exchanger 1 allosteric balance by its localization in cholesterol- and caveolin-rich membrane microdomains. J Cell Physiol 216:207–220

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Begenisich T (2006) Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel. J Gen Physiol 127:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilly BC, Edixhoven MJ, Tertoolen LGJ, Morii N, Saitoh Y, Narumiya S, deJonge HR (1996) Activation of the osmo-sensitive chloride conductance involves p21(rho) and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell 7:1419–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2000) Calcium signalling during RVD of kidney cells. Cell Physiol Biochem 10:297–302

    Article  CAS  PubMed  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2002) Calcium-induced calcium release participates in cell volume regulation of rabbit TALH cells. Pflugers Arch Eur J Physiol 443:754–761

    Article  CAS  Google Scholar 

  • Toczylowska-Maminska R, Dolowy K (2012) Ion transporting proteins of human bronchial epithelium. J Cell Biochem 113:426–432

    Article  CAS  PubMed  Google Scholar 

  • Tomassen SFB, Fekkes D, de Jonge HR, Tilly BC (2004) Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells. Am J Phys 286:C1417–C1422

    Article  CAS  Google Scholar 

  • Tormey JM, Diamond JM (1969) The ultrastructure route of fluid transport in rabbit gall bladder. J Gen Physiol 50:2031–2060

    Article  Google Scholar 

  • Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44:169–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travaglini KJ, Krasnow MA (2018) Profile of an unknown airway cell. Nature 560:313–314

    Article  CAS  PubMed  Google Scholar 

  • Tsai TT, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV (2007) MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. J Bone Miner Res 22:965–974

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci U S A 89:6418–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlik MT, Abell AN, Johnson NL, Sun WY, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Urbach V, Van Kerkhove E, Maguire D, Harvey BJ (1996) Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells. J Physiol 491:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbach V, Leguen I, O'Kelly I, Harvey BJ (1999) Mechanosensitive calcium entry and mobilization in renal A6 cells. J Membr Biol 168:29–37

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1960) Active and passive transport of the alkali metal ions. In: Ussing HH, Kruhøffer P, Thaysen JH, Thorn NA (eds) The alkali metal ions in biology. Springer, Berlin, pp 45–143

    Chapter  Google Scholar 

  • Ussing HH (1982) Volume regulation of frog skin epithelium. Acta Physiol Scand 114:363–369

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1985) Volume regulation and basolateral co-transport of sodium, potassium, and chloride ion in frog skin epithelium. Pflugers Arch Eur J Physiol 405(Suppl 1):S2–S7

    Article  CAS  Google Scholar 

  • Ussing HH, Eskesen K (1989) Mechanism of isotonic water transport in glands. Acta Physiol Scand 136:443–454

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH, Nedergaard S (1993) Recycling of electrolytes in small intestine of toad. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proc Alfred Benzon symposium 34 isotonic transport in leaky epithelia. Munksgaard, Copenhagen, pp 26–36

    Google Scholar 

  • Ussing HH, Lind F, Larsen EH (1996) Ion secretion and isotonic transport in frog skin glands. J Membr Biol 152:101–110

    Article  CAS  PubMed  Google Scholar 

  • Valverde MA, O’Brien JA, Sepúlveda FV, Ratcliff RA, Evans MJ, Colledge WH (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci U S A 92:9038–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde MA, Vazquez E, Munoz FJ, Nobles M, Delaney SJ, Wainwright BJ, Colledge WH, Sheppard DN (2000) Murine CFTR channel and its role in regulatory volume decrease of small intestine crypts. Cell Physiol Biochem 10:321–328

    Article  CAS  PubMed  Google Scholar 

  • van der Wijk T, Tomassen SFB, Houtsmuller AB, de Jonge HR, Tilly BC (2003) Increased vesicle recycling in response to osmotic cell swelling - cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 278:40020–40025

    Article  PubMed  CAS  Google Scholar 

  • van Heeswijk MPE, van Os CH (1986) Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol 92:183–193

    Article  PubMed  Google Scholar 

  • Vanoye CG, Reuss L (1999) Stretch-activated single K+ channels account for whole-cell currents elicited by swelling. Proc Natl Acad Sci U S A 96:6511–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • vanTol BL, Missan S, Crack J, Moser S, Baldridge WH, Linsdell P, Cowley EA (2007) Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7. Am Physiol Cell Physiol 293:C1010–C1019

    Article  CAS  Google Scholar 

  • Varela D, Simon F, Riveros A, Jorgensen F, Stutzin A (2004) NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J Biol Chem 279:13301–13304

    Article  CAS  PubMed  Google Scholar 

  • Vazquez E, Nobles M, Valverde MA (2001) Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels. Proc Natl Acad Sci U S A 98:5329–5334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verissimo F, Jordan P (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–5569

    Article  CAS  PubMed  Google Scholar 

  • Vinnakota S, Qian XJ, Egal H, Sarthy V, Sarkar HK (1997) Molecular characterization and in situ localization of a mouse retinal taurine transporter. J Neurochem 69:2238–2250

    Article  CAS  PubMed  Google Scholar 

  • Vitari AC, Deak M, Morrice NA, Alessi DR (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voets T, Droogmans G, Raskin G, Eggermont J, Nilius B (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc Natl Acad Sci U S A 96:5298–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    Article  CAS  PubMed  Google Scholar 

  • Wang W-H, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch Eur J Physiol 458:157–168

    Article  CAS  Google Scholar 

  • Wang J, Morishima S, Okada Y (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol Cell Physiol 284:C77–C84

    Article  CAS  PubMed  Google Scholar 

  • Wang GX, Dai YP, Bongalon S, Hatton WJ, Murray K, Hume JR, Yamboliev IA (2005) Hypotonic activation of volume-sensitive outwardly rectifying anion channels (VSOACs) requires coordinated remodeling of subcortical and perinuclear actin filaments. J Membr Biol 208:15–26

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995) Hypoosmotic challenge stimulates transepithelial K+ secretion and activates apical I-Sk channel in vestibular dark cells. J Membr Biol 147:263–273

    CAS  PubMed  Google Scholar 

  • Webb BA, White KA, Grillo-Hill BK, Schonichen A, Choi C, Barber DL (2016) A histidine cluster in the cytoplasmic domain of the Na-H exchanger NHE1 confers pH-sensitive phospholipid binding and regulates transporter activity. J Biol Chem 291:24096–24104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner F (2006) Cell volume-regulated cation channels. Contr Nephr 152:25–53

    Article  CAS  Google Scholar 

  • Weinstein AM (2013) Sodium and chloride transport: proximal nephron. In: Alpern RJ, Moe OW, Caplan MJ (eds) Seldin and Giebisch’s the kidney. Elsevier, Amsterdam, pp 1081–1141

    Chapter  Google Scholar 

  • Welling PA (1995) Cross-talk and role of KATP channels in the proximal tubule. Kidney Internat 48:1017–1023

    Article  CAS  Google Scholar 

  • Welling LW, Welling DJ (1988) Relationship between structure and function in renal proximal tubule. J Electr Microsc Techn 9:171–185

    Article  CAS  Google Scholar 

  • Welling LW, Evan AP, Welling DJ, Gattone VH III (1983a) Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Intern 23:358–367

    Article  CAS  Google Scholar 

  • Welling LW, Welling DJ, Ochs TJ (1983b) Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am J Physiol Renal Physiol 245:F123–F129

    Article  CAS  Google Scholar 

  • Welsh MJ, McCann JD (1985) Intracellular calcium regulates basolateral potassium channels in a chloride-secreting epithelium. Proc Natl Acad Sci U S A 82:8823–8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willumsen NJ, Boucher RC (1991) Sodium transport and intracellular sodium activity in cultured human nasal epithelium. Am J Physiol Cell Physiol 261:C319–C331

    Article  CAS  Google Scholar 

  • Willumsen NJ, Larsen EH (1986) Membrane potentials and intracellular Cl activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl conductance. J Membr Biol 94:173–190

    Article  CAS  PubMed  Google Scholar 

  • Willumsen NJ, Davis CW, Boucher RC (1989) Intracellular Cl activity and cellular Cl pathways in cultured human airway epithelium. Am J Physiol Cell Physiol 256:C1033–C1044

    Article  CAS  Google Scholar 

  • Willumsen NJ, Vestergaard L, Larsen EH (1992) Cyclic AMP-and β-agonist-activated chloride conductance of a toad skin epithelium. J Physiol 449:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willumsen NJ, Davis CW, Boucher RC (1994) Selective responce of human airway epithelia to luminal but nor serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Invest 94:779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windhager EE, Whittembury G, Oken DE, Schatzmann HJ, Solomon AK (1959) Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Phys 197:313–318

    Article  CAS  Google Scholar 

  • Wittekindt OH, Dietl P (2018) Aquaporins in the lung. Pflugers Arch Eur J Physiol 471(4):519–532. https://doi.org/10.1007/s00424-018-2232-y

    Article  CAS  Google Scholar 

  • Wong MMY, Foskett JK (1991) Oscillations of cytosolic sodium during calcium oscillations in exocrine acinar cells. Science 254:1014–1016

    Article  CAS  PubMed  Google Scholar 

  • Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) Cell physiology - a volume-sensitive chloride conductance in human colonic cell-line T84. Am J Physiol Cell Physiol 256:C1111–C1119

    Article  CAS  Google Scholar 

  • Wu MM, Civan MM (1991) Voltage dependence of current through the Na,K-exchange pump of Rana oocytes. J Membr Biol 121:23–36

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yang H, Iserovich P, Fischbarg J, Reinach PS (1997) Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J Membr Biol 158:127–136

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song P, Tian D-A, Soleimani M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch Eur J Physiol 466:1541–1556

    Article  CAS  Google Scholar 

  • Yamamoto S, Ichishima K, Ehara T (2008) Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells. Biomed Res-Tokyo 29:307–315

    Article  CAS  Google Scholar 

  • Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadunaisky JA, Cardona S, Au L, Roberts DM, Fisher E, Lowenstein B, Cragoe EJ, Spring KR (1995) Chloride transport activation by plasma osmolarity during rapid adaptation to high salinity of Fundulus heteroclitus. J Membr Biol 143:207–217

    Article  CAS  PubMed  Google Scholar 

  • Zhuo JL, Li XC (2013) Proximal nephron. Compr Physiol 3:1079–1123

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Stine F Pedersen is acknowledged for suggestions to and critical reading of Sect. 11.7.3. Work in the authors’ laboratories is supported by grant CF17–0186 from the Carlsberg Foundation, the Natural Science Foundation, the Augustinus Foundation, and Brødrene Hartmann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Else Kay Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsen, E.H., Hoffmann, E.K. (2020). Volume Regulation in Epithelia. In: Hamilton, K.L., Devor, D.C. (eds) Basic Epithelial Ion Transport Principles and Function. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-52780-8_11

Download citation

Publish with us

Policies and ethics