Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

We review studies on regulatory volume decrease (RVD) and regulatory volume increase (RVI) of major ion and water transporting vertebrate epithelia. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared to amphibian skin and mammalian cortical collecting tubule of low and intermediate osmotic permeability. Crosstalk between entrance and exit mechanisms interferes with volume regulation both at aniso-osmotic and iso-osmotic volume perturbations. It has been proposed that cell volume regulation is an intrinsic function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified.

A large number of transporters and ion channels involved in cell volume regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell volume regulation. In the same cell, these functions may be maintained by different ion pathways that are separately regulated. RVD is often preceded by increase in cytosolic free Ca2+, probably via influx through TRP channels, but Ca2+ release from intracellular stores has also been observed. Cell volume regulation is associated with specific ATP release mechanisms and involves tyrosine kinases, mitogen-activated protein kinases, WNKs and Ste20-related kinases that are modulated by osmotic stress and cell volume perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre P, Christensen EI, Smith BL et al (1993) Distribution of the aquaporin CHIP in secretory and resorbtive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    Article  PubMed  PubMed Central  Google Scholar 

  • Akita T, Fedorovich SV, Okada Y (2011) Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell Physiol Biochem 28:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Almaca J, Tian YM, Aldehni F et al (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpern RJ (1987) Apical membrane chloride base-exchange in the rat proximal convoluted tubule. J Clin Invest 79:1026–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenberg GA, Reuss L (2013) Mechanisms of water transport across cell membranes and epithelia. In: Alpern RJ, Caplan M, Moe OW (eds) Seldin and Giebisch’s The Kidney. Physiology and Pathophysiology, vol 1. Elsevier/Academic, Amsterdam, pp 95–120

    Google Scholar 

  • Andersen HK, Urbach V, Van Kerkhove E et al (1994) Maxi K+ channels in the basolateral membrane of the exocrine frog skin gland regulated by intracellular calcium and pH. Pflugers Arch 431:52–65

    Article  Google Scholar 

  • Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 301:F1143–F1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM et al (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J. Biol Chem 279:54062–54068

    Article  CAS  Google Scholar 

  • Attaphitaya S, Nehrke K, Melvin JE (2001) Acute inhibition of brain-specific Na+/H+ exchanger isoform 5 by protein kinases A and C and cell shrinkage. Am J Physiol Cell Physiol 281:C1146–C1157

    CAS  PubMed  Google Scholar 

  • Bachmann O, Heinzmann A, Mack A et al (2007) Mechanisms of secretion-associated shrinkage and volume recovery in cultured rabbit parietal cells. Am J Physiol Gastrointest Liver Physiol 292:G711–G717

    Article  CAS  PubMed  Google Scholar 

  • Bagnasco S, Balaban RS, Fales HM et al (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261:5872–5877

    CAS  PubMed  Google Scholar 

  • Bahn YS, Xue CY, Idnurm A et al (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Burg MB (1987) Osmotically active organic solutes in the renal inner medulla. Kidney Int 31:562–564

    Article  CAS  PubMed  Google Scholar 

  • Barriere H, Belfodil R, Rubera I et al (2003a) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriere H, Rubera I, Belfodil R et al (2003b) Swelling-activated chloride and potassium conductance in primary cultures of mouse proximal tubules. Implication of KCNE1 protein. J Membr Biol 193:153–170

    Article  CAS  PubMed  Google Scholar 

  • Beck JS, Potts DJ (1990) Cell swelling, cotransport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J Physiol 425:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begenisich T, Nakamoto T, Ovitt CE et al (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 279:47681–47687

    Article  CAS  PubMed  Google Scholar 

  • Bellantuono V, Cassano G, Lippe C (2008) The adrenergic receptor substypes in frog (Rana esculenta) skin. Comp Biochem Physiol C 148:160–164

    Google Scholar 

  • Boese SH, Kinne RK, Wehner F (1996) Single channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells. Am J Physiol Renal Physiol 271:F1224–F1233

    CAS  Google Scholar 

  • Bookstein C, Musch MW, Depaoli A et al (1994) A unique sodium-hydrogen exchange isoform (Nhe-4) of the inner medulla of the rat-kidney is induced by hyperosmolarity. J Biol Chem 269:29704–29709

    CAS  PubMed  Google Scholar 

  • Boucher RC (1994) Human airway ion transport. Part One. Am J Resp Crit Care 150:271–281

    Article  CAS  Google Scholar 

  • Boucher RC (1999) Topical review: molecular insights into the physiology of the ‘thin film’ of airway surface liquid. J Physiol 516:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pflugers Arch 445:495–498

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28:318–329

    CAS  Google Scholar 

  • Browe DM, Baumgarten CM (2004) Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta 1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol 124:273–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB (2000) Macromolecular crowding as a cell volume sensor. Cell Physiol Biochem 10:251–256

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Knepper MA (1986) Single tubule perfusion techniques. Kidney Int 30:166–170

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Kwon ED, Kultz D (1997) Regulation of gene expression by hypertonicity. Ann Rev Physiol 59:437–455

    Article  CAS  Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  CAS  PubMed  Google Scholar 

  • Cala PM (1980) Volume regulation by amphiuma red-blood-cells - Nature of the ion flux pathways. Fed Proc 39:379–379

    Google Scholar 

  • Calderone V (2002) Large-conductance, Ca2+-activated K+ channels: function, pharmacology and drugs. Curr Med Chem 9:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Cantiello HF, Patenaude CR, Ausiello DA (1989) G-protein subunit, alpha-I-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial-cell line, A6. J Biol Chem 264:20867–20870

    CAS  PubMed  Google Scholar 

  • Carpi-Medina P, Whittembury G (1988) Comparison of transcellular and transepithelial water osmotic permeabilities (Pos) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch 412:66–74

    Article  CAS  PubMed  Google Scholar 

  • Carpi-Medina P, Gonzáles E, Whittembury G (1983) Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am J Physiol Renal Physiol 244:F554–F563

    CAS  Google Scholar 

  • Carpi-Medina P, Lindemann B, Gonzáles E et al (1984) The continous measurement of tubular volume changes in response to step changes in contraluminal osmolarity. Pflugers Arch 400:343–348

    Article  CAS  PubMed  Google Scholar 

  • Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflugers Arch 399:259–265

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Physiol 257:C159–C173

    CAS  PubMed  Google Scholar 

  • Chase HS, Alawqati Q (1983) Calcium reduces the sodium permeability of luminal membrane-vesicles from toad bladder - Studies using a fast-reaction apparatus. J Gen Physiol 81:643–665

    Article  CAS  PubMed  Google Scholar 

  • Choe K, Strange K (2009) Volume regulation and osmosensing in animal cells. In: Evans DH (ed) Osmotic and Ionic Regulation. Cells and Animals. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp 37–67

    Google Scholar 

  • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    Article  CAS  PubMed  Google Scholar 

  • Cid LP, Roa-Rojas HA, Niemeyer MI et al (2013) TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Front Physiol 4(Article 198):1–9

    Google Scholar 

  • Cohen DM (2005) TRPV4 and the mammalian kidney. Pflugers Arch 451:168–175

    Article  CAS  PubMed  Google Scholar 

  • Cook DI, Van Lennep EW, Roberts ML et al (1994) Secretion by the major salivary glands. Physiol Gastrointest Tract 2:1061–1117

    Google Scholar 

  • Copp J, Wiley S, Ward MW et al (2005) Hypertonic shock inhibits growth factor receptor signaling, induces caspase-3 activation, and causes reversible fragmentation of the mitochondrial network. Am J Physiol Cell Physiol 288:C403–C415

    Article  CAS  PubMed  Google Scholar 

  • Cotton CU, Weinstein AM, Reuss L (1989) Osmotic water permeability of Necturus gallbladder epithelium. J Gen Physiol 93:649–679

    Article  CAS  PubMed  Google Scholar 

  • Curran PF (1960) Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol 43:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dartsch PC, Kolb HA, Beckmann M et al (1994) Morphological alterations and cytoskeletal reorganization in opossum kidney (Ok) cells during osmotic swelling and volume regulation. Histochemistry 102:69–75

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Finn AL (1982) Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216:525–527

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Finn AL (1985) Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol Cell Physiol 249:C304–C312

    CAS  Google Scholar 

  • Delpire E (2009) The mammalian family of sterile 20p-like protein kinases. Pflugers Arch 458:953–967

    Article  CAS  PubMed  Google Scholar 

  • Delpire E, Austin TM (2010) Kinase regulation of Na+-K+-2Cl cotransport in primary afferent neurons. J Physiol Lond 588:3365–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Ciano-Oliveira C, Sirokmany G, Szaszi K et al (2003) Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation. Am J Physiol Cell Physiol 285:C555–C566

    Article  PubMed  Google Scholar 

  • Di Ciano-Oliveira C, Thirone ACP, Szaszi K et al (2006) Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol 187:257–272

    Article  CAS  Google Scholar 

  • Diamond JM (1964) Transport of salt and water in rabbit and Guinea pig Gallbladder. J Gen Physiol 48:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond JM (1982) Trans-cellular cross-talk between epithelial-cell membranes. Nature 300:683–685

    Article  CAS  PubMed  Google Scholar 

  • Dörge A, Rick R, Beck F-X et al (1985) Cl transport across the basolateral membrane in frog skin epithelium. Pflugers Arch 405(Suppl 1):S8–S11

    Article  PubMed  Google Scholar 

  • Douglas IJ, Brown PD (1996) Regulatory volume increase in rat lacrimal gland acinar cells. J Membr Biol 150:209–217

    Article  CAS  PubMed  Google Scholar 

  • Dube L, Parent L, Sauve R (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am J Physiol Renal Physiol 259:F348–F356

    CAS  Google Scholar 

  • Eggermont J, Trouet D, Carton I, Nilius B (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys 35:263–274

    Article  CAS  PubMed  Google Scholar 

  • Elsing C, Gosch I, Hennings JC et al (2007) Mechanisms of hypotonic inhibition of the sodium, proton exchanger type 1 (NHE1) in a biliary epithelial cell line (Mz-Cha-1). Acta Physiol 190:199–208

    Article  CAS  Google Scholar 

  • Ericson A, Spring KR (1982a) Coupled NaCl entry into Necturus gallbladder epithelial-cells. Am J Physiol Cell Physiol 243:C140–C145

    CAS  Google Scholar 

  • Ericson AC, Spring KR (1982b) Volume regulation by Necturus gallbladder - Apical Na+-H+ and Cl-HCO3 exchange. Am J Physiol Cell Physiol 243:C146–C150

    CAS  Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75:74–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RL, Park K, Turner RJ, Watson GE et al (2000) Severe impairment of salivation in Na+/K+/2Cl cotransporter (NKCC1)-deficient mice. J Biol Chem 275:26720–26726

    CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Eveloff JL, Calamia J (1986) Effect of osmolarity on cation fluxes in medullary thick ascending limb cells. Am J Physiol Renal Physiol 250:F176–F180

    CAS  Google Scholar 

  • Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potentialchannel TRPV4: from structure to disease. Progr Biophys Mol Biol 103:2–17

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez JM, Nobles M, Currid A et al (2002) Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 283:C1705–C1714

    Article  CAS  PubMed  Google Scholar 

  • Ferraris JD, Burg MB (2006) Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib Nephrol 152:125–141

    Article  CAS  PubMed  Google Scholar 

  • Fiol DF, Kultz D (2007) Osmotic stress sensing and signaling in fishes. FEBS J 274:5790–5798

    Article  CAS  PubMed  Google Scholar 

  • Fisher RS, Persson BE, Spring KR (1981) Epithelial cell volume regulation - bicarbonate dependence. Science 214:1357–1359

    Article  CAS  PubMed  Google Scholar 

  • Flagella M, Clarke LL, Miller ML et al (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946–26955

    Article  CAS  PubMed  Google Scholar 

  • Ford P, Rivarola V, Chara O et al (2005) Volume regulation in cortical collecting duct cells: role of AQP2. Biol Cell 97:687–697

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215:164–166

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK, Bern HA, Machen TE et al (1983) Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106:255–281

    CAS  PubMed  Google Scholar 

  • Foskett JK, Wong MMM, Sueaquan G et al (1994) Isosmotic modulation of cell-volume and intracellular ion activities during stimulation of single exocrine cells. J Exp Zool 268:104–110

    Article  CAS  PubMed  Google Scholar 

  • Friis MB, Friborg CR, Schneider L et al (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567:427–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Subramanya A, Rozansky D et al (2006) WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol 290:F1305–F1314

    Article  CAS  PubMed  Google Scholar 

  • Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci USA 101:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeggeler HP, Guillod Y, Loffing-Cueni D et al (2011) Vasopressin-dependent coupling between sodium transport and water flow in a mouse cortical collecting duct cell line. Kidney Int 79:843–852

    Article  CAS  PubMed  Google Scholar 

  • Gagnon KB, Delpire E (2012) Molecular physiology of Spak and Osr1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 92:1577–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnon E, Forbush B, Flemmer AW et al (2002) Functional and molecular characterization of the shark renal Na-K-Cl cotransporter: novel aspects. Am J Physiol Renal Physiol 283:F1046–F1055

    Article  PubMed  Google Scholar 

  • Galizia L, Pizzoni A, Fernandez J et al (2012) Functional interaction between AQP2 and TRPV4 in renal cells. J Cell Biochem 113:580–589

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Pardo-Pastor C et al (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci USA 110:9553–9558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvin JL, Spring KR (1992) Regulation of apical membrane ion transport in Necturus gallbladder. Am J Physiol Cell Physiol 263:C187–C193

    CAS  Google Scholar 

  • Gelfand EW, Cheung RKK, Ha K et al (1984) Volume regulation in lymphoid leukemia-cells and assignment of cell lineage. New Eng J Med 311:939–944

    Article  CAS  PubMed  Google Scholar 

  • Giraldez F, Ferreira KTG (1984) Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). Biochim Biophys Acta 769:625–628

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles E, Carpi-Medina P, Linares H et al (1984) Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch 402:337–339

    Article  PubMed  Google Scholar 

  • Gonzalez E, Carpimedina P, Whittembury G (1982) Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am J Physiol Renal Physiol 242:F321–F330

    CAS  Google Scholar 

  • Grasset E, Gunter-Smith P, Schultz SG (1983) Effects of Na-coupled alanine transport on intracellular K-activities and the K-conductance of the basolateral membranes of Necturus small intestine. J Membr Biol 71:89–94

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Heitzmann D, Hug MJ et al (1999) The Na+,2Cl−, K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage. Pflugers Arch 438:165–176

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Erlij D (1978) Intracellular calcium and regulation of sodium-transport in frog skin. Proc R Soc Ser B Biol 202:353–360

    Article  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Rothstein A (1982) Increased anion permeability during volume regulation in human-lymphocytes. Philos T Roy Soc B 299:509–518

    Article  CAS  Google Scholar 

  • Grinstein S, Woodside M, Sardet C et al (1992) Activation of the Na+/H+ antiporter during cell-volume regulation - Evidence for a phosphorylation-independent mechanism. J Biol Chem 267:23823–23828

    CAS  PubMed  Google Scholar 

  • Grosell M (2007) Intestinal transport processes in marine fish osmoregulation. In: Baldisserotto B, Mancera JM, Kapoor BG (eds) Fish Osmoregulation. Science Publishers Inc., Enfield, New Hamshire, USA, pp 332–357

    Google Scholar 

  • Grubb BR, Schiretz FR, Boucher RC (1997) Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. Am J Physiol Cell Physiol 273:C21–C29

    CAS  Google Scholar 

  • Grunnet M, Jespersen T, MacAulay N et al (2003) KCNQ1 channels sense small changes in cell volume. J Physiol 549:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guggino WB, Oberleithner H, Giebisch G (1985) Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney. J Gen Physiol 86:31–58

    Article  CAS  PubMed  Google Scholar 

  • Guggino WB, Markakis D, Amzel LM (1990) Measurements of volume and shape changes in isolated tubules. Method Enzymol 191:371–379

    Article  CAS  Google Scholar 

  • Gunter-Smith PJ, Grasset E, Schultz SG (1982) Sodium-coupled amino-acid and sugar transport by Necturus small intestine - an equivalent electrical circuit analysis of a rheogenic cotransport system. J Membr Biol 66:25–39

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ (1992) Energization of sodium absorption by the H+-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol 172:289–309

    CAS  PubMed  Google Scholar 

  • Harvey BJ (1995) Cross-talk between sodium and potassium channels in tight epithelia. Kidney Intl 48:1191–1199

    Article  CAS  Google Scholar 

  • Harvey BJ, Ehrenfeld J (1988) Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductance in frog skin epithelium. J Gen Physiol 92:793–810

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ, Kernan RP (1984) Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. J Physiol 349:501–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey BJ, Thomas SR, Ehrenfeld J (1988) Intracellular pH controls cell membranes Na+ and K+ conductances and transport in frog skin epithelium. J Gen Physiol 92:767–791

    Article  CAS  PubMed  Google Scholar 

  • Hazama A, Okada Y (1988) Electrophysiological evidence for independent activation of K+ and Cl conductances during the regulatory volume decrease in cultured epithelial-cells. Comp Biochem Phys A 90:809–809

    Article  Google Scholar 

  • Hazama A, Okada Y (1990) Biphasic rises in cytosolic free Ca2+ in association with activation of K+ and Cl conductance during the regulatory volume decrease in cultured human epithelial-cells. Pflugers Arch 416:710–714

    Article  CAS  PubMed  Google Scholar 

  • Hebert SC (1986a) Hypertonic cell-volume regulation in mouse thick limbs. 1. ADH dependency and nephron heterogeneity. Am J Physiol Cell Physiol 250:C907–C919

    CAS  Google Scholar 

  • Hebert SC (1986b) Hypertonic cell-volume regulation in mouse thick limbs. 2. Na+-H+ and Cl-HCO3 exchange in basolateral membranes. Am J Physiol Cell Physiol 250:C920–C931

    CAS  Google Scholar 

  • Hebert SC (1987) Volume regulation in renal epithelial cells. Sem Nephrol 7:48–60

    CAS  Google Scholar 

  • Hebert SC, Mount DB, Gamba G (2004) Molecular physiology of cation-coupled Cl cotransport: the SLC12 family. Pflugers Arch 447:580–593

    Article  CAS  PubMed  Google Scholar 

  • Hendus-Altenburger R, Kragelund BB, Pedersen SF (2014) Structural dynamics and regulation of the mammalian SLC9A family of Na+/H+ exchangers. In: Bevensee MO (ed) Exchangers, vol 73, Current topics in membranes. Academic/Elsevier, Burlington, pp 69–148, Chapter 2

    Chapter  Google Scholar 

  • Henson JH, Roesener CD, Gaetano CJ et al (1997) Confocal microscopic observation of cytoskeletal reorganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+. J Exp Zool 279:415–424

    Article  CAS  PubMed  Google Scholar 

  • Higgins G, Buchanan P, Perriere M et al (2014) Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid Layer and epithelial repair in cystic fibrosis. Am J Resp Cell Mol Biol 51:178–190

    Google Scholar 

  • Hillyard SD, Møbjerg N, Tanaka S et al (2009) Osmotic and Ion Regulation in Amphibians. In: Evans DH (ed) Osmotic and Ionic Regulation. Cells and Animals. Taylor & Francis Group, Boca Raton, Florida, pp 367–441

    Google Scholar 

  • Hoffmann EK (1978) Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumore cells. In: Jørgensen CB, Skadhauge E (eds) Proceedings of Alfred Benzon Symposium XI. Osmotic and Volume Regulation. Munksgaard, Copenhagen, pp 397–417

    Google Scholar 

  • Hoffmann EK, Pedersen SF (2007) Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells. Am J Physiol Cell Physiol 292:C1854–C1866

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Pedersen SF (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways. Acta Physiol 202:465–485

    Article  CAS  Google Scholar 

  • Hoffmann EK, Ussing HH (1992) Membrane mechanisms in volume regulation in vertebrane cells and epithelia. In: Giebisch G, Schafer JA, Ussing H, Kristensen P (eds) Membrane transport in biology, vol 5. Springer, Berlin, pp 317–399

    Chapter  Google Scholar 

  • Hoffmann EK, Simonsen LO, Sjøholm C (1979) Membrane potential, chloride exchange, and chloride conductance in ehrlich mouse ascites tumour cells. J Physiol 296:61–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann EK, Sjøholm C, Simonsen LO (1983) Na+, Cl co-transport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J Membr Biol 76:269–280

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Hoffmann E, Lang F et al (2002) Control of Cl transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. Biochim Biophys Acta 1566:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Schettino T, Marshall WS (2007) The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 148:29–43

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  • Hougaard C, Niemeyer MI, Hoffmann EK et al (2000) K+ currents activated by leukotriene D-4 or osmotic swelling in Ehrlich ascites tumour cells. Pflugers Arch 440:283–294

    CAS  PubMed  Google Scholar 

  • Hougaard C, Klaerke DA, Hoffmann EK et al (2004) Modulation of KCNQ4 channel activity by changes in cell volume. Biochim Biophys Acta 1660:1–6

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Cha SK, Wang HR et al (2007) WNKs: protein kinases with a unique kinase domain. Exp Mol Med 39:565–573

    Article  CAS  PubMed  Google Scholar 

  • Hughes ALH, Pakhomova A, Brown PD (2010) Regulatory volume increase in epithelial cells isolated from the mouse fourth ventricle choroid plexus involves Na+-H+ exchange but not Na+-K+-2Cl cotransport. Brain Res 1323:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Yoshiyama N (1988) Intracellular chloride activity of rabbit proximal straight tubule perfused in vitro. Am J Physiol Renal Physiol 255:F49–F56

    CAS  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300:G82–G98

    Article  CAS  PubMed  Google Scholar 

  • Jeon US, Kim J-A, Sheen MR, Kwon HM (2006) How tonicity regulates genes: story of TonEBP transcriptional activator. Acta Physiol 187:241–247

    Article  CAS  Google Scholar 

  • Jorgensen NK, Pedersen SF, Rasmussen HB et al (2003) Cell swelling activates cloned Ca2+-activated K+ channels: a role for the F-actin cytoskeleton. Biochim Biophys Acta 1615:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kahle KT, Rinehart J, Ring A, Gimenez I, Gamba G, Hebert SC, Lifton RP (2006) WNK protein kinases modulate cellular Cl flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology 21:326–335

    Article  CAS  PubMed  Google Scholar 

  • Kashgarian M, Biemesderfer D, Caplan M et al (1985) Monoclonal antibody to Na, K-ATPase: immunocytochemical localization along nephron segments. Kidney Int 28:899–913

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Romero MF (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk KL, DiBona DR, Schafer JA (1987a) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol Renal Physiol 252:F933–F942

    CAS  Google Scholar 

  • Kirk KL, Schafer JA, DiBona DR (1987b) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol Renal Physiol 252:F922–F932

    CAS  Google Scholar 

  • Kirkegaard SS, Lambert IH, Gammeltoft S et al (2010) Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. Am J Physiol Cell Physiol 299:C844–C853

    Article  CAS  PubMed  Google Scholar 

  • Klausen TK, Hougaard C, Hoffmann EK et al (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 291:C757–C771

    Article  CAS  PubMed  Google Scholar 

  • Klausen TK, Janssens A, Prenen J et al (2014) Single point mutations of aromatic residues in transmembrane helices 5 and-6 differentially affect TRPV4 activation by 4 alpha-PDD and hypotonicity: implications for the role of the pore region in regulating TRPV4 activity. Cell Calcium 55:38–47

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, O’Neill WC (1995) Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport. Am J Physiol Cell Physiol 269:C1524–C1531

    CAS  Google Scholar 

  • Kregenow FM (1971) The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol 58:396–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krump E, Nikitas K, Grinstein S (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem 272:17303–17311

    Article  CAS  PubMed  Google Scholar 

  • L’Hoste S, Barriere H, Belfodil R et al (2007) Extracellular pH alkalinisation by Cl/HCO3 exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney. Am J Physiol Renal Physiol 292:F628–F638

    Article  PubMed  CAS  Google Scholar 

  • Lacroix J, Poet M, Huc L et al (2008) Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks. Biochemistry 47:13674–13685

    Article  CAS  PubMed  Google Scholar 

  • Lang F (2013) Cell volume control. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney, vol 1, 5th edn. Academic, London, pp 121–141

    Chapter  Google Scholar 

  • Larsen EH (1991) Chloride transport by high-resistance heterocellular epithelia. Physiol Rev 71:235–283

    CAS  PubMed  Google Scholar 

  • Larsen EH (2011) Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake. Acta Physiol 202:435–464

    Article  CAS  Google Scholar 

  • Larsen EH, Harvey BJ (1994) Chloride currents of single mitochondria-rich cells of toad skin epithelium. J Physiol 478:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen EH, Ramløv H (2013) Role of cutaneous surface fluid in frog osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 165:365–370

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Ussing HH, Spring KR (1987) Ion transport by mitochondria-rich cells in toad skin. J Membr Biol 99:25–40

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Sørensen JB, Sørensen JN (2000) A mathematical model of solute coupled water transport in toad intestine incorporating recirculation of the actively transported solute. J Gen Physiol 116:101–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen EH, Willumsen NJ, Møbjerg N et al (2009) The lateral intercellular space as osmotic coupling compartment. Acta Physiol 195:171–186

    Article  CAS  Google Scholar 

  • Larsen EH, Deaton LE, Onken H et al (2014) Osmoregulation and Excretion. Compr Physiol 4:405–573

    Article  PubMed  Google Scholar 

  • Larson M, Spring KR (1983) Bumetanide inhibition of NaCl transport by Necturus Gallbladder. J Membr Biol 74:123–129

    Article  CAS  PubMed  Google Scholar 

  • Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder - basolateral KCl exit. J Membr Biol 81:219–232

    Article  CAS  PubMed  Google Scholar 

  • Lauf PK, Misri S, Chimote AA, Adragna NC (2008) Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. Am J Physiol Cell Physol 294:C820–C832

    Article  CAS  Google Scholar 

  • Lazarowski ER, Tarran R, Grubb BR et al (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leaf A (1959) Maintenance of concentration gradients and regulation of cell volume. Annal N Y Acad Sci 72:396–404

    Article  CAS  Google Scholar 

  • Lewis A, Di Ciano C, Rotstein OD et al (2002) Osmotic stress activates Rac and Cdc42 in neutrophils: role in hypertonicity-induced actin polymerization. Am J Physiol Cell Physiol 282:C271–C279

    Article  CAS  PubMed  Google Scholar 

  • Liedtke CM, Cole TS (2002) Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochim Biophys Acta 1589:77–88

    Article  CAS  PubMed  Google Scholar 

  • Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Schettino T (2006) The Na+-K+-2Cl cotransporter and the osmotic stress response in a model salt transport epithelium. Acta Physiol 187:115–124

    Article  CAS  Google Scholar 

  • Lionetto MG, Giordano ME, Nicolardi G et al (2001) Hypertonicity stimulates Cl transport in the intestine of fresh water acclimated eel, Anguilla anguilla. Cell Physiol Biochem 11:41–54

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Pedersen SF, Hoffmann EK et al (2002) Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium. Cell Physiol Biochem 12:163–163

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Giordano ME, De Nuccio F et al (2005) Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. J Exp Biol 208:749–760

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Rizzello A, Giordano ME et al (2008) Molecular and functional expression of high conductance Ca2+ activated K+ channels in the eel intestinal epithelium. Cell Physiol Biochem 21:373–384

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Bandyopadhyay B, Nakamoto T et al (2006) A role for AQP5 in activation of TRPV4 by hypotonicity - Concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  PubMed  Google Scholar 

  • Lock H, Valverde MA (2000) Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells. J Biol Chem 275:34849–34852

    Article  CAS  PubMed  Google Scholar 

  • Lopes AG, Amzel LM, Markakis D et al (1988) Cell volume regulation by the thin descending limb og Henle’s loop. Proc Natl Acad Sci USA 85:2873–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57:510–573

    CAS  PubMed  Google Scholar 

  • Macleod RJ, Hamilton JR (1990) Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport. Am J Physiol Gastrointest Liver Physiol 258:G665–G674

    CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1991) Volume regulation initiated by Na+-nutrient cotransport in isolated mammalian villus enterocytes. Am J Physiol Gastrointest Liver Physiol 260:G26–G33

    CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1999) Ca2+/calmodulin kinase II and decreases in intracellular pH are required to activate K+ channels after substantial swelling in villus epithelial cells. J Membr Biol 172:59–66

    Article  CAS  PubMed  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Fosset M, Lesage F et al (1999a) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F et al (1999b) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F et al (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133

    Article  CAS  PubMed  Google Scholar 

  • Manganel M, Turner RJ (1991) Rapid secretagogue-induced activation of Na+/H+ exchange in rat parotid acinar-cells - Possible interrelationship between volume regulation and stimulus-secretion coupling. J Biol Chem 266:10182–10188

    CAS  PubMed  Google Scholar 

  • Markadieu N, Delpire E (2014) Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch 466:91–105

    Article  CAS  PubMed  Google Scholar 

  • Marsh DJ, Spring KR (1985) Polarity of volume-regulatory increase by Necturus gallbladder epithelium. Am J Physiol Cell Physiol 249:C471–C475

    CAS  Google Scholar 

  • Marsh DJ, Jensen PK, Spring KR (1985) Computer-based determination of size and shape in living cells. J Microsc 137:281–292

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS (2011) Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol 202:487–499

    Article  CAS  Google Scholar 

  • Marshall WS, Grosell M (2005) Ion transport, osmoregulation, and acid–base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC, Boca Raton, pp 177–230

    Google Scholar 

  • Marshall WS, Bryson SE, Luby T (2000) Control of epithelial Cl secretion by basolateral osmolality in the euryhaline teleost Fundulus heteroclitus. J Exp Biol 203:1897–1905

    CAS  PubMed  Google Scholar 

  • Marshall WS, Ossum CG, Hoffmann EK (2005) Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. J Exp Biol 208:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS, Katoh F, Main HP et al (2008) Focal adhesion kinase and β1 integrin regulation of Na+, K+, 2 Cl cotransporter in osmosensing ion transporting cells of killifish, Fundulus heteroclitus. Comp Biochem Phys A 150:288–300

    Article  CAS  Google Scholar 

  • Matsumura Y, Cohen B, Guggino WB et al (1984) Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol 79:153–161

    Article  CAS  PubMed  Google Scholar 

  • Maunsbach AB, Boulpaep EL (1991) Immunoelectron microscope localization of Na, K-ATPase in transport pathways in proximal tubule epithelium. Micron Microsc Acta 22:55–56

    Article  Google Scholar 

  • McCormick JA, Ellison DH (2011) The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91:177–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner G, Wang W, Paulmichl M et al (1985) Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflugers Arch 404:131–137

    Article  CAS  PubMed  Google Scholar 

  • Meyer K, Korbmacher C (1996) Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells. J Gen Physiol 108:177–193

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Le Gall C, Harvey BJ et al (1999) Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. J Physiol 515:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JW (1985) Ion transport across the exocrine glands of the frog skin. Pflugers Arch 405(suppl 1):S44–S49

    Article  PubMed  Google Scholar 

  • Mills JW, DiBona DR (1978) Distribution of Na+-pump sites in the frog gallbladder. Nature 271:273–275

    Article  CAS  PubMed  Google Scholar 

  • Mills JW, Ernst SA (1975) Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta 375:268–273

    Article  CAS  PubMed  Google Scholar 

  • Mills JW, Ernst SA, DiBona DR (1977) Localization of Na+-pump sites in frog skin. J Cell Biol 73:88–110

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2006) Macromolecular crowding. Curr Biol 16:R269–R271

    Article  CAS  PubMed  Google Scholar 

  • Moeckel GW, Zhang L, Chen X (2006) Role of integrin alpha1beta1 in the regulation of renal medullary osmolyte concentration. Am J Physiol Renal Physiol 290:F223–F231

    Article  CAS  PubMed  Google Scholar 

  • Montroserafizadeh C, Guggino WB (1990) Cell-volume regulation in the nephron. Ann Rev Physiol 52:761–772

    Article  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB, Montrose MH (1991) Cellular differentiation regulates expression of Cl transport and cystic fibrosis transmembrane conductance regulator mRNA in human intestinal cells. J Biol Chem 266:4495–4499

    CAS  PubMed  Google Scholar 

  • Moore-Hoon ML, Turner RJ (2000) The structural unit of the secretory Na+-K+-2Cl cotransporter (NKCCl) is a homodimer. Biochemistry 39:3718–3724

    Article  CAS  PubMed  Google Scholar 

  • Nauntofte B, Dissing S (1988) Cholinergic-induced electrolyte transport in rat parotid acini. Comp Biochem Phys A 90:739–746

    Article  CAS  Google Scholar 

  • Nearing J, Betka M, Quinn S et al (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci USA 99:9231–9236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard S, Larsen EH, Ussing HH (1999) Sodium recirculation and isotonic transport in toad small intestine. J Membr Biol 168:241–251

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Agre P (1995) The aquaporin family of water channels in kidney. Kidney Int 48:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Larsen EH (2007) Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport. Comp Biochem Phys A 148:64–71

    Article  CAS  Google Scholar 

  • Nielsen MS, Nielsen R (1999) Effect of carbachol and prostaglandin E2 on chloride secretion and signal transduction in the exocrine glands of frog skin (Rana esculenta). Pflugers Arch 438:732–740

    CAS  PubMed  Google Scholar 

  • Nielsen S, Chou C-L, Marples D et al (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D et al (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Kwon T-H, Dimke H et al (2013) Chapter 41 - Aquaporin water channels in mammalian kidney. In: Alpern RJ, Moe OW, Caplan M (eds) Seldin and Giebisch’s the kidney, 5th edn. Academic, London, pp 1405–1439

    Chapter  Google Scholar 

  • Niemeyer MI, Cid LP, Barros LF et al (2001a) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Sepulveda FV (2001b) K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart. Comp Biochem Phys A 130:565–575

    Article  CAS  Google Scholar 

  • Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Eggermont J, Voets T et al (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Voets T, Prenen J et al (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J Physiol 516:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Owsianik G, Voets T et al (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  • Novak I (2011) Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol 202:501–522

    Article  CAS  Google Scholar 

  • Novak I, Greger R (1988) Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport. Pflugers Arch 411:546–553

    Article  CAS  PubMed  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292:C460–C467

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JA, Walters RJ, Sepulveda FV (1991) Regulatory volume decrease in small intestinal crypts is inhibited by K+ and Cl channel blockers. Biochim Biophys Acta 1070:501–504

    Article  PubMed  Google Scholar 

  • O’Brien JA, Walters RJ, Valverde MA et al (1993) Regulatory volume increase after hypertonicity- or vasoactive-intestinal-peptide-induced cell-volume decrease in small-intestinal crypts is dependent on Na+-K+-2Cl cotransport. Pflugers Arch 423:67–73

    Article  PubMed  Google Scholar 

  • Ogushi Y, Kitagawa D, Hasegawa T et al (2010) Correlation between aquaporin and water permeability in response to vasotocin, hydrin and β-adrenergic effectors in the ventral pelvic skin of the tree frog Hyla japonica. J Exp Biol 213:288–294

    Article  CAS  PubMed  Google Scholar 

  • Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol Cell Physiol 273:C755–C789

    CAS  Google Scholar 

  • Okada Y, Maeno E, Shimizu T (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565

    Article  CAS  PubMed  Google Scholar 

  • Orlowski J, Grinstein S (2011) Na+/H+ exchangers. Compr Physiol 1:2083–2100

    PubMed  Google Scholar 

  • Owsianik G, Talavera K, Voets T et al (2006) Permeation and selectivity of TRP channels. Ann Rev Physiol 68:685–717

    Article  CAS  Google Scholar 

  • Pan Z, Capo-Aponte JE, Zhang F et al (2007) Differential dependence of regulatory volume decrease behavior in rabbit corneal epithelial cells on MAPK superfamily activation. Exp Eye Res 84:978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang V, Counillon L, Lagadic-Gossmann D et al (2012) On the role of the difference in surface tensions involved in the allosteric regulation of NHE-1 induced by low to mild osmotic pressure, membrane tension and lipid asymmetry. Cell Biochem Biophys 63:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Hong JH, Ohana E et al (2012) The WNK/SPAK and IRBIT/PP1 pathways in epithelial fluid and electrolyte transport. Physiology 27:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Method Enzymol 428:183–207

    Article  CAS  Google Scholar 

  • Pedersen SF, Beisner KH, Hougaard C et al (2002a) Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J Physiol 541:779–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SF, Varming C, Christensen ST et al (2002b) Mechanisms of activation of NHE by cell shrinkage and by calyculin A in ehrlich ascites tumor cells. J Membr Biol 189:67–81

    Article  CAS  Google Scholar 

  • Pedersen SF, Kapus A, Hoffmann EK (2011) Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 22:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Klausen TK, Nilius B (2015) The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol 213:868–881

    Article  CAS  Google Scholar 

  • Peng JB, Warnock DG (2007) WNK4-mediated regulation of renal ion transport proteins. Am J Physiol 293:F961–F973

    CAS  Google Scholar 

  • Persson B-E, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeablity and volume regulation. J Gen Physiol 79:481–505

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH (1992) Stimulus-secretion coupling - Cytoplasmic calcium signals and the control of ion channels in exocrine acinar-cells. J Physiol 448:1–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen OH (1993) Regulation of isotonic fluid secretion in exocrine acini. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proceeding of Alfred Benzon Symposium 34. Isotonic Transport in Leaky Epithelia. Munksgaard, Copenhagen, pp 103–146

    Google Scholar 

  • Petersen OH, Gallacher DV (1988) Electrophysiology of pancreatic and salivary acinar cells. Ann Rev Physiol 50:65–80

    Article  CAS  Google Scholar 

  • Piechotta K, Garbarini N, England R et al (2003) Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl cotransporter in the nervous system - Evidence for a scaffolding role of the kinase. J Biol Chem 278:52848–52856

    Article  CAS  PubMed  Google Scholar 

  • Pochynyuk O, Zaika O, O’Neil RG et al (2013) Novel insights into TRPV4 function in the kidney. Pflugers Arch 465:177–186

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Qiu ZZ, Dubin AE, Mathur J et al (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuss L (1985) Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci USA 82:6014–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–3304

    Article  CAS  PubMed  Google Scholar 

  • Rick R, Dörge A, Von Arnim E et al (1978) Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol 39:313–331

    Article  CAS  PubMed  Google Scholar 

  • Rigor RR, Damoc C, Phinney BS et al (2011) Phosphorylation and activation of the plasma membrane Na+/H+ exchanger (NHE1) during osmotic cell shrinkage. PLoS ONE 6(12)

    Google Scholar 

  • Robertson MA, Foskett JK (1994) Na+ transport pathways in secretory acinar-cells - membrane cross-talk mediated by [Cl]I. Am J Physiol Cell Physiol 267:C146–C156

    CAS  Google Scholar 

  • Roger F, Martin PY, Rousselot M et al (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle’s loop - Requirement of p38 kinase for the regulatory volume increase response. J Biol Chem 274:34103–34110

    Article  CAS  PubMed  Google Scholar 

  • Romanenko VG, Catalan MA, Brown DA et al (2010) TMEM16A encodes the Ca2+-activated Cl channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:12990–13001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotin D, Grinstein S (1989) Impaired cell-volume regulation in Na+-H+ exchange-deficient mutants. Am J Physiol Cell Physiol 257:C1158–C1165

    CAS  Google Scholar 

  • Sabirov RS, Okada Y (2005) ATP release via anion channels. Purinerg Signal 1:311–328

    Article  CAS  Google Scholar 

  • Sarkadi B, Attisano L, Grinstein S, Buchwald M, Rothstein A (1984) Volume regulation of Chinese-Hamster ovary cells in anisoosmotic media. Biochim Biophys Acta 774:159–168

    Article  CAS  PubMed  Google Scholar 

  • Schafer JA (1990) Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule. Ann Rev Physiol 52:709–726

    Article  CAS  Google Scholar 

  • Schafer JA (1993) The rat collecting duct as an isosmotic volume reabsorber. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proceeding of Alfred Benzon Symposium 34. Isotonic Transport in Leaky Epithelia. Munksgaard, Copenhagen, pp 339–354

    Google Scholar 

  • Schafer JA, Patlak CS, Troutman SL et al (1978) Volume absorption in the parts recta. II. Hydraulic conductivity coefficient. Am J Physiol Renal Physiol 234:F340–F348

    CAS  Google Scholar 

  • Schatzmann HJ, Windhager EE, Solomon AK (1958) Single proximal tubules of the Necturus kidney. II. Effect of 2, 4-dinitro-phenol and ouabain on water reabsorption. Am J Physiol 195:570–574

    CAS  PubMed  Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1991) Basolateral transport pathways for K+ and Cl in rabbit proximal tubule:effects on cell volume. Am J Physiol Renal Physiol 260:F101–F109

    CAS  Google Scholar 

  • Schlatter E, Greger R, Schafer JA (1990) Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl transport. Pflugers Arch 417:317–323

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol Renal Physiol 10:F579–F590

    Google Scholar 

  • Schultz SG (1992) Membrane crosstalk in sodium-absorbing epithelial cells. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 287–299

    Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    CAS  PubMed  Google Scholar 

  • Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl channel. Proc Natl Acad Sci USA 101:6770–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen JB, Larsen EH (1996) Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin. J Gen Physiol 108:421–433

    Article  PubMed  Google Scholar 

  • Sørensen JB, Larsen EH (1998) Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl channels activated by cyclic AMP. J Gen Physiol 112:19–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen JB, Larsen EH (1999) Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion. Pflugers Arch 439:101–112

    Article  PubMed  Google Scholar 

  • Sørensen JB, Nielsen MS, Nielsen R et al (1998) Luminal ion channels involved in isotonic secretion by Na+-recirculation in exocrine gland-acini. Roy Dan Acad Sci Lett Biol Ser 49:179–191

    Google Scholar 

  • Sørensen JB, Nielsen MS, Gudme CN et al (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch 442:1–11

    Article  PubMed  CAS  Google Scholar 

  • Speake T, Douglas IJ, Brown PD (1998) The role of calcium in the volume regulation of rat lacrimal acinar cells. J Membr Biol 164:283–291

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Hope A (1978) Size and shape of the lateral intercellular spaces in a living epithelium. Science 200:54–57

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Hope A (1979) Fluid transport and the dimensions of cell and interspaces of living Necturus gallbladder. J Gen Physiol 73:287–305

    Article  CAS  PubMed  Google Scholar 

  • Spring KR, Ussing HH (1986) The volume of mitochondria-rich cells of frog skin epithelium. J Membr Biol 92:21–26

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko A (2012) Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol 2:1541–1584

    PubMed  PubMed Central  Google Scholar 

  • Sten-Knudsen O (2002) Biological membranes. Theory of transport, potentials and electric impulses. Cambridge University Press, Cambridge

    Google Scholar 

  • Stirling CE (1972) Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoner LC, Morley GE (1995) Effect of Basolateral or apical hyposmolarity on apical maxi-K channels of everted rat collecting tubule. Am J Physiol Renal Physiol 268:F569–F580

    CAS  Google Scholar 

  • Strange K (1988) RVD in principal and intercalated cells of rabbit cortical collecting tubule. Am J Physiol Cell Physiol 255:C612–C621

    CAS  Google Scholar 

  • Strange K (1989) Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J Membr Biol 107:249–261

    Article  CAS  PubMed  Google Scholar 

  • Strange K (1990) Volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss. Am J Physiol Renal Physiol 258:F732–F740

    CAS  Google Scholar 

  • Strange K, Spring K (1986) Methods for imaging renal tubule cells. Kidney Int 30:192–200

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Spring KR (1987a) Absence of significant cellular dilution during ADH-stimulated water reabsorption. Science 235:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Spring KR (1987b) Cell membrane water permeability of rabbit cortical collecting duct. J Membr Biol 96:27–43

    Article  CAS  PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  • Stutzin A, Hoffmann EK (2006) Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol 187:27–42

    Article  CAS  Google Scholar 

  • Takemura T, Sato F, Suzuki Y et al (1991) Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells. J Membr Biol 119:211–219

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch - a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol Renal Physiol 257:F347–F352

    CAS  Google Scholar 

  • Tarran R, Grubb BR, Gatzy JT et al (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118:223–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarran R, Trout L, Donaldson SH et al (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol Renal Physiol 236:F505–F512

    CAS  Google Scholar 

  • Tekpli X, Huc L, Lacroix J et al (2008) Regulation of Na+/H+ exchanger 1 allosteric balance by its localization in cholesterol- and caveolin-rich membrane microdomains. J Cell Physiol 216:207–220

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Begenisich T (2006) Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel. J Gen Physiol 127:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilly BC, Edixhoven MJ, Tertoolen LGJ et al (1996) Activation of the osmo-sensitive chloride conductance involves p21(rho) and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell 7:1419–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2000) Calcium signalling during RVD of kidney cells. Cell Physiol Biochem 10:297–302

    Article  CAS  PubMed  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2002) Calcium-induced calcium release participates in cell volume regulation of rabbit TALH cells. Pflugers Arch 443:754–761

    Article  CAS  PubMed  Google Scholar 

  • Toczylowska-Maminska R, Dolowy K (2012) Ion transporting proteins of human bronchial epithelium. J Cell Biochem 113:426–432

    Article  CAS  PubMed  Google Scholar 

  • Tomassen SFB, Fekkes D, de Jonge HR et al (2004) Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells. Am J Physiol Cell Physiol 286:C1417–C1422

    Article  CAS  PubMed  Google Scholar 

  • Tormey JM, Diamond JM (1969) The ultrastructure route of fluid transport in rabbit gall bladder. J Gen Physiol 50:2031–2060

    Article  Google Scholar 

  • Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44:169–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai TT, Guttapalli A, Agrawal A et al (2007) MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. J Bone Miner Res 22:965–974

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya K, Wang W, Giebisch G et al (1992) ATP is a coupling modulator of parallel Na, K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89:6418–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlik MT, Abell AN, Johnson NL et al (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Urbach V, Van Kerkhove E, Maguire D et al (1996) Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells. J Physiol 491:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbach V, Leguen I, O’Kelly I et al (1999) Mechanosensitive calcium entry and mobilization in renal A6 cells. J Membr Biol 168:29–37

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1960) Active and passive transport of the alkali metal ions. In: Ussing HH, Kruhøffer P, Thaysen JH, Thorn NA (eds) The Alkali Metal Ions in Biology. Springer Verlag, Berlin, Göttingen, Heidelberg, pp 45–143

    Chapter  Google Scholar 

  • Ussing HH (1982) Volume regulation of frog skin epithelium. Acta Physiol Scand 114:363–369

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1985) Volume regulation and basolateral co-transport of sodium, potassium, and chloride ion in frog skin epithelium. Pflugers Arch 405(suppl 1):S2–S7

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH, Eskesen K (1989) Mechanism of isotonic water transport in glands. Acta Physiol Scand 136:443–454

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH, Nedergaard S (1993) Recycling of electrolytes in small intesine of toad. In: Ussing HH, Fischbarg J, Sten-Knudsen O, Larsen EH, Willumsen NJ (eds) Proceeding of Alfred Benzon Symposium 34. Isotonic Transport in Leaky Epithelia. Munksgaard, Copenhagen, pp 26–36

    Google Scholar 

  • Ussing HH, Lind F, Larsen EH (1996) Ion secretion and isotonic transport in frog skin glands. J Membr Biol 152:101–110

    Article  CAS  PubMed  Google Scholar 

  • Valverde MA, O’Brien JA, Sepúlveda FV et al (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci USA 92:9038–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde MA, Vazquez E, Munoz FJ et al (2000) Murine CFTR channel and its role in regulatory volume decrease of small intestine crypts. Cell Physiol Biochem 10:321–328

    Article  CAS  PubMed  Google Scholar 

  • van der Wijk T, Tomassen SFB, Houtsmuller AB et al (2003) Increased vesicle recycling in response to osmotic cell swelling - Cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 278:40020–40025

    Article  PubMed  CAS  Google Scholar 

  • van Heeswijk MPE, van Os CH (1986) Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol 92:183–193

    Article  PubMed  Google Scholar 

  • vanTol BL, Missan S, Crack J et al (2007) Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7. Am J Physiol Cell Physiol 293:C1010–C1019

    Article  CAS  PubMed  Google Scholar 

  • Vazquez E, Nobles M, Valverde MA (2001) Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels. Proc Natl Acad Sci USA 98:5329–5334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verissimo F, Jordan P (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–5569

    Article  CAS  PubMed  Google Scholar 

  • Vitari AC, Deak M, Morrice NA et al (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voets T, Droogmans G, Raskin G et al (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc Natl Acad Sci USA 96:5298–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss FK, Ullrich F, Münch J et al (2014) Identification of LRRC8 heteromers as an essential component of the volume-rRegulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A et al (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    CAS  PubMed  Google Scholar 

  • Wang W-H, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflug Arch 458:157–168

    Article  CAS  Google Scholar 

  • Wang J, Morishima S, Okada Y (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol Cell Physiol 284:C77–C84

    Article  CAS  PubMed  Google Scholar 

  • Wang GX, Dai YP, Bongalon S et al (2005) Hypotonic activation of volume-sensitive outwardly rectifying anion channels (VSOACs) requires coordinated remodeling of subcortical and perinuclear actin filaments. J Membr Biol 208:15–26

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P, Liu J, Shen Z et al (1995) Hypoosmotic challenge stimulates transepithelial K+ secretion and activates apical I-Sk channel in vestibular dark cells. J Membr Biol 147:263–273

    CAS  PubMed  Google Scholar 

  • Wehner F (2006) Cell volume-regulated cation channels. Contrib Nephrol 152:25–53

    Article  CAS  PubMed  Google Scholar 

  • Weinstein AM (2008) Sodium and chloride transport. Proximal nephron. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s The Kidney. Physiology and Pathophysiology. Fourth edn. Academic Press, Elsevier, New York, pp 793–847

    Chapter  Google Scholar 

  • Welling PA (1995) Cross-talk and role of KATP channels in the proximal tubule. Kidney Int 48:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Welling LW, Welling DJ (1988) Relationship between structure and function in renal proximal tubule. J Electron Microsc Tech 9:171–185

    Article  CAS  PubMed  Google Scholar 

  • Welling LW, Evan AP, Welling DJ et al (1983a) Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Int 23:358–367

    Article  CAS  PubMed  Google Scholar 

  • Welling LW, Welling DJ, Ochs TJ (1983b) Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am J Physiol Renal Physiol 245:F123–F129

    CAS  Google Scholar 

  • Willumsen NJ, Boucher RC (1991) Sodium transport and intracellular sodium activity in cultured human nasal epithelium. Am J Physiol Cell Physiol 261:C319–C331

    CAS  Google Scholar 

  • Willumsen NJ, Davis CW, Boucher RC (1989) Intracellular Cl activity and cellular Cl pathways in cultured human airway epithelium. Am J Physiol Cell Physiol 256:C1033–C1044

    CAS  Google Scholar 

  • Willumsen NJ, Vestergaard L, Larsen EH (1992) Cyclic AMP-and β-agonist-activated chloride conductance of a toad skin epithelium. J Physiol 449:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willumsen NJ, Davis CW, Boucher RC (1994) Selective responce of human airway epithelia to luminal but nor serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Invest 94:779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MMY, Foskett JK (1991) Oscillations of cytosolic sodium during calcium oscillations in exocrine acinar cells. Science 254:1014–1016

    Article  CAS  PubMed  Google Scholar 

  • Worrell RT, Butt AG, Cliff WH et al (1989) Cell Physiology - a volume-sensitive chloride conductance in human colonic cell-line T84. Am J Physiol 256:C1111–C1119

    CAS  PubMed  Google Scholar 

  • Wu X, Yang H, Iserovich P, Fischbarg J et al (1997) Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J Membr Biol 158:127–136

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Yu Q, Riederer B et al (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch 466:1541–1556

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Ichishima K, Ehara T (2008) Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells. Biomed Res-Tokyo 29:307–315

    Article  CAS  Google Scholar 

  • Yang CL, Angell J, Mitchell R et al (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadunaisky JA, Cardona S, Au L et al (1995) Chloride transport activation by plasma osmolarity during rapid adaptation to high salinity of Fundulus heteroclitus. J Membr Biol 143:207–217

    Article  CAS  PubMed  Google Scholar 

  • Zhuo JL, Li XC (2013) Proximal nephron. Compr Physiol 3:1079–1123

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Stine F. Pedersen is acknowledged for suggestions to and critical reading of Sect. 4.7.3. Work in the authors’ laboratories was supported by the Natural Science Foundation, the Carlsberg Foundation, the Augustinus Foundation and the Brødrene Hartmann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Else Kay Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Larsen, E.H., Hoffmann, E.K. (2016). Volume Regulation in Epithelia. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_4

Download citation

Publish with us

Policies and ethics