Skip to main content
Log in

Nonlinear response of biophoton emission to external perturbations

  • Multi-author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

By considering an exciplex system consisting of collective molecules in interaction with both the ‘pumping’ fields and the biophoton fields, the two-level exciplex model and the three-level exciplex model are presented. They are useful for the investigation of the quasi-stationary behaviour of biophoton emission, and biophoton emission as a dynamic process in the presence of external perturbations. Our theoretical results predict a series of nonlinear effects, such as chaos, fractal behaviour, and non-equilibrium phase transition. These effects characterize the coherence nature of living systems. In our approaches, there are two important quantitiesf andx, which can be used to mark the working points of the two-level and three-level exciplex systems. All the influences of external perturbations on the exciplex systems, e.g. change of temperature, the addition of agents, exposure to light, etc., can be interpreted as shifts of the working points of the systems, leading to a diversity of nonlinear response of biophoton emission. In addition, the agreements of the theoretical results and the corresponding experimental observations on biophoton emission from biological systems in the presence of external perturbations are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bullough, R. K., Conceptual models of co-operative processes in nonlinear electrodynamics, in: Nonlinear Electrodynamics in Biological Systems, pp. 347–392. Eds W. R. Adey and A. F. Lawrence. Plenum Press, New York and London 1984.

    Chapter  Google Scholar 

  2. Chwirot, W. B., New indications of possible role of DNA in ultraweak photon emission from biological systems. J. Pl. Physiol.122 (1986) 81–86.

    Article  CAS  Google Scholar 

  3. Chwirot, W. B., and Dygdala, R. S., Ethidium bromide-induced changes in intensity of ultraweak photon emission from microsporocytes of larch in selected stages of development. J. Pl. Physiol.134 (1989) 762–765.

    Article  CAS  Google Scholar 

  4. Chwirot, W. B., and Dygdala, R. S., Light transmission of scales covering male influorescence and leaf buds in larch during microsporogenesis. J. Pl. Physiol.125 (1986) 79–86.

    Article  Google Scholar 

  5. Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Optical coherence of white-light-induced photon emission from microsporocytes ofLarix europaea. Cytobios44 (1985) 239–249.

    Google Scholar 

  6. Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Quasi-monochromatic-light-induced photon emission from microsporocytes of larch shows oscillating decay behaviour predicted by the electromagnetic model of differentiation. Cytobios47 (1987) 137–146.

    Google Scholar 

  7. Chwirot, W. B., Ultraweak photon emission and anther meiotic cycle inLarix europaea (experimental investigation of Nagl and Popp's electromagnetic model of differentiation). Experientia44 (1988) 594–599.

    Article  CAS  PubMed  Google Scholar 

  8. Chwirot, B. W., Ultraweak luminescence studies of microsporogenesis in larch, in: Recent Advances in Biophoton Research and its Applications, pp. 259–285. Eds F. A. Popp, K. H. Li, and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  9. Cilento, G., Photobiochemistry without light. Experientia44 (1988) 572–576.

    Article  CAS  PubMed  Google Scholar 

  10. Colli, L., Facchini, U., Guidotti, G., Dugnani-Lonati, R., Orsenigo, M., and Sommariva, O., Further measurements on the bioluminescence of the seedlings. Experientia11 (1955) 479–481.

    Article  Google Scholar 

  11. Crubellier, A., Liberman, S., Pavolini, D., and Pillet, P., Superradiance and subradiance: I. Interatomic interference and symmetry properties in three-level systems. J. Phys. B: Phys.18 (1985) 3811–3833.

    Article  CAS  Google Scholar 

  12. Dicke, R. H., Coherence in spontaneous radiation processes. Phys. Rev.93 (1954) 99–110.

    Article  CAS  Google Scholar 

  13. Dobrowolski, J. W., Borkowski, J., and Szymczyk, S., Preliminary investigation of the influence of laser light on the bioluminescence of blood cells: Laser stimulation of cumulation of selenium in tomato fruit, in: Photon Emission from Biological Systems, pp. 211–218. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  14. Dobrowolski, J. W., Ezzahir, A., and Knapik, M., Possibilities of chemiluminescence application in comparative studies of normal and cancer cells with special attention to leukemic blood cells, in: Photon Emission from Biological Systems, pp. 170–183. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  15. Eberly, J. H., Mandel, L., and Wolf, E. (Eds), Coherence and Quantum Optics VI. Plenum Press, New York and London 1989.

    Google Scholar 

  16. Galle, M., Neurohr, R., Altmann, G., Popp, F. A., and Nagl, W., Biophoton emission fromDaphnia magna: A possible factor in the self-regulation of swarming. Experientia47 (1991) 457–460.

    Article  Google Scholar 

  17. Galle, M., Population density-dependence of biophoton emission from Daphnia, in: Recent Advances in Biophoton Research and its Applications, pp. 345–356. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  18. del Giudice, E., Doglia, S., and Milani, M., Ordered structures as a result of the propagation of coherent electric waves in living systems, in: Interactions between Electromagnetic Fields and Cells, pp. 157–169. Eds A. Chiabrera, C. Nicolini and H. P. Schwan. Plenum Press, New York and London 1985.

    Google Scholar 

  19. Grasso, F., Grillo, C., Musumeci, F., Triglia, A., Rodolico, G., Cammisuli, F., Rinzivillo, C., Fragati, G., Santuccio, A., and Rodolico, M., Photon emission from normal and tumour human tissues. Experientia48 (1992) 10–13.

    Article  CAS  PubMed  Google Scholar 

  20. Grochmalicki, J., and Lewenstein, M., Are squeezed states necessary? A case study of photon detection based on quantum interference. Phys. Rep.208 (1991) 189–265.

    Article  CAS  Google Scholar 

  21. Gu, Q., Quantum theory of biophoton emission, in: Recent Advances in Biophoton Research and its Applications, pp. 59–112. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  22. Gu, Q., Squeezing in one-atom masser. Chin. J. Lasers17 (1990) 352–356.

    Google Scholar 

  23. Gu, Q., Novel features in photon statistics from a single-mode laser. Science in ChinaA 33 (1990) 1460–1468.

    CAS  Google Scholar 

  24. Gu, Q., Some nonlinear effects in superradiance (review). Chin. J. Quantum Electron.4 (1987) 107–121.

    Google Scholar 

  25. Gu, Q., The ultraweak photon emission from biological systems (review). Chin. J. Quantum Electron.5 (1988) 97–108.

    Google Scholar 

  26. Gueron, M., Eisinger, and Lamola, A. A., Excited states of nucleic acids, in: Basic Principles in Nucleic Acid Chemistry, pp. 311–398. Ed. Paul O. P. Tso. Academic Press, New York and London 1974.

    Chapter  Google Scholar 

  27. Gurwitsch, A. A., Mitogenetic radiation as an evidence of nonequilibrium properties of living matter, in: Recent Advances in Biophoton Research and its Applications, pp. 457–468. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Google Scholar 

  28. Gurwitsch, A. G., Die Natur des spezifischen Erregers der Zellteilung. Arch. Entw. Mech. Org.100 (1923) 11–40.

    Google Scholar 

  29. Ho, M. W., Xu, X., Ross, S., and Saunders, P. T., Light emission and rescattering in synchronously developing populations of earlyDrosophila embryos: Evidence for coherence of the embryonic field and long range cooperativity, in: Recent Advances in Biophoton Research and its Applications, pp. 287–306. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  30. Inaba, H., Shimizu, Y., Tsuji, Y., and Yamagishi, A., Photon counting spectral analyzing system of extra-weak chemi- and bioluminescence for biochemical applications. Photochem. Photobiol.30 (1979) 169–175.

    Article  CAS  Google Scholar 

  31. Inaba, H., Yamagishi, A., Takyu, C., Yoda, B., Goto, Y., Miyazawa, T., Kaneda, T., and Saeki, A., Development of an ultra-high sensitive photon counting system and its application to biomedical measurements. Opt. Lasers E.3 (1982) 125–130.

    Article  Google Scholar 

  32. Inaba, H., Super-high sensitivity systems for detection and spectral analysis of ultraweak photon emission from biological cells and tissues. Experientia44 (1988) 550–559.

    Article  CAS  PubMed  Google Scholar 

  33. Jezowska-Trzebiatowska, B., Kochel, B., Slawinski, J., and Strek, W. (Eds), Photon Emission from Biological Systems. World Scientific, Singapore 1987.

    Google Scholar 

  34. Johnson, R. G., and Haynes, R. H., Evidence from photoreaction kinetics for multiple DNA photolyases in yeast (Saccharomyces cerevisiae). Photochem. Photobiol.43 (1986) 423–428.

    Article  CAS  Google Scholar 

  35. Joshi, A., and Puri, R. R., Steady-state behavior of three-level systems in a broadband squeezed bath. Phys. Rev.A 45 (1992) 2025–2030.

    Article  CAS  PubMed  Google Scholar 

  36. Kennedy, T. A. B., Quantum theory of cross-phase-modulational instability: Twin-beam correlations in a χ(3) process. Phys. Rev.A44 (1991) 2113–2123.

    Article  CAS  PubMed  Google Scholar 

  37. Kochel, B., Grabikowski, E., and Slawinski, J., Analysis of photoncounting time series of low level luminescence from wheat leaves at high temperatures, in: Photon Emission from Biological Systems, pp. 86–109. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  38. Köhler, B., Lambing, K., Neurohr, R., Nagl, W., Popp, F. A., and Wahler, J., Photonenemission — Eine neue Methode zur Erfassung der ‘Qualität’ von Lebensmitteln. Deutsche Lebensmittel-Rundschau87 (1991) 78–83.

    Google Scholar 

  39. Koga, K., Sato, T., and Ootaki, T., Negative phototropism in the piloboloid mutants ofPhycomyces blakeslecanus. Planta162 (1984) 97–103.

    Article  CAS  PubMed  Google Scholar 

  40. Konev, S. V., Lyskova, T. I., and Nisenbaum, G. D., Very weak bioluminescence of cells in the ultraviolet region of the spectrum and its biological role. Biophysics11 (1966) 410–413.

    Google Scholar 

  41. Lambing, K., Biophoton Measurement as a supplement to the conventional consideration of food quality, in: Recent Advances in Biophoton Research and its Applications, pp. 393–413. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  42. Li, K. H., Coherent radiation from DNA molecules, in: Recent Advances in Biophoton Research and its Applications, pp. 157–195. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  43. Li, K. H., and Popp, F. A., Non-exponential decay law of radiation systems with coherent rescattering. Phys. Lett.A93 (1983) 262–266.

    Article  Google Scholar 

  44. Li, K. H., Physics of open systems. Phys. Rep.134 (1986) 1–85.

    Article  Google Scholar 

  45. Li, K. H., Popp, F. A., Nagl, W., and Klima, H., Indications of optical coherence in biological systems and its possible significance, in: Coherent Excitations in Biological Systems. Eds H. Fröhlich and F. Kremer. Springer Verlag, Berlin, Heidelberg, New York 1983.

    Google Scholar 

  46. Li, K. H., and Popp, F. A., Dynamics of DNA excited states, in: Molecular and Biological Physics of Living Systems, pp. 31–52. Ed. R. K. Mishra, Dordrecht, Boston and London 1990.

  47. Li, K. H., Coherence in physics and biology, in: Recent Advances in Biophoton Research and its Applications, pp. 113–155. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  48. Lipkind, M., Can the vitalistic entelechia principle be a working instrument (The theory of the biological field of Alexander G. Gurwitsch), in: Recent Advances in Biophoton Research and its Applications, pp. 469–494. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  49. Mandoli, D. F., and Briggs, W. R., Optical properties of etiolated plant tissues. Proc. natl Acad. Sci. USA79 (1982) 2902–2906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathew, R., and Kumar, S., The non-exponential decay pattern of the weak luminescence from seedlings inCicer arietinum L. stimulated by pulsating electric fields. Experientia48 (1992) in press.

  51. McCullough, J. J., Photoadditions of aromatic compounds. Chem. Rev.87 (1987) 811–860.

    Article  CAS  Google Scholar 

  52. Mei, W. P., Ultraweak photon emission from synchronized yeast (Saccharomyces cerevisiae) as a function of the cell division cycle, in: Recent Advances in Biophoton Research and its Applications, pp. 243–258. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  53. Meystre, P., and Walls, D. F. (Eds), Nonclassical Effects in Quantum Optics. American Institute of Physics, New York 1991.

    Google Scholar 

  54. Mieg, C., Mei, W. P., and Popp, F. A., Technical notes to biophoton emission, in: Recent Advances in Biophoton Research and its Applications, pp. 197–206. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  55. Musumeci, F., Triglia, A., Grasso, F., Experimental evidence on ultraweak photon emission from normal and tumour human tissues, in: Recent Advances in Biophoton Research and its Applications, pp. 307–326. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  56. Musumeci, F., Godlewski, M., Popp, F. A., and Ho, M. W., Time behaviour of delayed luminescence inAcetabularia acetabulum, in: Recent Advances in Biophoton Research and its Applications, pp. 327–344. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  57. Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. Basic considerations. Cytobios37 (1983) 45–62.

    CAS  PubMed  Google Scholar 

  58. Neurohr, R., and Galle, M., Die Kommunikationsfähigkeit von Zellen. Natur- und Ganzheits-Medizin4 (1991) 28–33.

    Google Scholar 

  59. Neurohr, R., Non-linear optical properties of delayed luminescence from cress seeds, in: Recent Advances in Biophoton Research and its Applications, pp. 375–392. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  60. Niggli, H. J., Ultraweak photons emitted by cells: biophotons. J. Photochem. Photobiol. B: Biol., in press.

  61. Niggli, H., Biophoton re-emission studies in carcinogenic mouse melanoma cells, in: Recent Advances in Biophoton Research and its Applications, pp. 231–242. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  62. Peitgen, H. O., and Saupe, D. (Eds), The Science of Fractal Images. Springer Verlag, New York, Berlin, Heidelberg, London, Paris and Tokyo 1988.

    Google Scholar 

  63. Pike, E. R., and Walther, H. (Eds), Photons and Quantum Fluctuations. Adam Hilger, Bristol and Philadelphia 1988.

    Google Scholar 

  64. Popov, G. A., and Tarusov, B. N., Nature of spontaneous luminescence of animal tissues. Biophysics8 (1963) 372.

    Google Scholar 

  65. Popp, F. A., Cilento, G., Chwirot, W. B., Galle, M., Gurwitsch, A. A., Inaba, H., Li, K. H., Mei, W. P., Nagl, W., Neurohr, R., Schamhart, D. H. J., Slawinski, J., and van Wijk, R., Biophoton emission (Multi-author Review). Experientia44 (1988) 543–600.

    Article  Google Scholar 

  66. Popp, F. A., Li, K. H., and Gu, Q. (Eds), Recent Advances in Biophoton Research and its Applications. World Scientific, Singapore New Jersey, London, Hong Kong 1992.

    Google Scholar 

  67. Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingärtner, O., Wolf, R., Biophoton emission: New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.

    Article  CAS  PubMed  Google Scholar 

  68. Popp, F. A., Biologie de la Lumière. Marc Pietteur, Editeur, Liege/Belgique 1989.

    Google Scholar 

  69. Popp, F. A., and Deny, J., Biophotonen-Information und Chaostheorie, in: Ganzheitsmedizin, pp. 53–66. Ed. H. Stacher, Facultas-Universitätsverlag, Wien 1991.

    Google Scholar 

  70. Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Gross, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.

    Google Scholar 

  71. Popp, F. A., Li, K. H., and Nagl, W., A thermodynamic approach to temperature response of biological systems as demonstrated by low level luminescence of cucumber seedlings. Z. Pflanzenphysiol.114 (1984) 1–13.

    Article  Google Scholar 

  72. Popp, F. A., Photon-storage in biological systems, in: Electromagnetic Bio-Information, pp. 123–149. Eds F. A. Popp, G. Becker, H. L. König and W. Pescerka. Urban & Schwarzenberg, München, Baltimore 1979.

    Google Scholar 

  73. Popp, F. A., Bericht an Bonn. (Verlag für Ganzheitsmedizin), Essen 1986.

    Google Scholar 

  74. Popp, F. A., Li, K. H., Mei, W. P., Galle, M., and Neurohr, R., Physical aspects of biophotons. Experientia44 (1988) 576–585.

    Article  CAS  PubMed  Google Scholar 

  75. Popp, F. A., Principles of quantum biology as demonstrated by ultraweak photon emission from living cells. Proc. Int. Conf. Lasers '85, Las Vegas 1985. Am. Soc. Quantum Optics and Electronics 1985.

  76. Popp, F. A., On the coherence of ultraweak photoemission from living tissues, in: Disequilibrium and Self-Organization, pp. 207–230. Ed. C. W. Kilmister. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo 1986.

    Chapter  Google Scholar 

  77. Popp, F. A., and Li, K. H., Hyperbolic relaxation as a sufficient condition of a fully coherent ergodic field, in: Recent Advances in Biophoton Research and its Applications. pp. 47–58. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  78. Popp, F. A., and Nagl, W., A physical (electromagnetic) model of differentiation. Applications and examples. Cytobios37 (1983) 71–84.

    CAS  PubMed  Google Scholar 

  79. Popp, F. A., Biologie des Lichts. Paul Parey Verlag, Berlin, Hamburg 1984.

    Google Scholar 

  80. Popp, F. A., and Nagl., W., DNA conformations. Towards an understanding of stacked base interactions: non-equilibrium phase transitions as a probable model. Polymer Bull.15 (1986) 89–91.

    Article  CAS  Google Scholar 

  81. Popp, F. A., Coherent photon storage of biological systems, in: Electromagnetic Bio-Information, 2nd edn, pp. 144–167. Eds F. A. Popp, U. Warnke, H. L. König and W. Peschka. Urban & Schwarzenberg, München, Wien, Baltimore 1989.

    Google Scholar 

  82. Popp, F. A., Some essential questions of biophoton research and probable answers, in: Recent Advances in Biophoton Research and its Applications, pp. 1–46. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  83. Popp, F. A., Some remarks on biological consequences of a coherent biophoton field, in: Recent Advances in Biophoton Research and its Applications, pp. 357–376. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  84. Quickenden, T. I., and Tibury, R. N., Growth dependent luminescence from cultures of normal and respiratory deficientSaccharomyces cerevisiae. Photochem. Photobiol.37 (1983) 337–344.

    Article  CAS  PubMed  Google Scholar 

  85. Quickenden, T. E., and Hee, S. Q., The spectral distribution of the luminescence emitted during growth of the yeastSaccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol.23 (1976) 201–204.

    Article  CAS  PubMed  Google Scholar 

  86. Rattemeyer, M., Popp, F. A., and Nagl, W., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.

    Article  CAS  PubMed  Google Scholar 

  87. Rohner, F., Biophoton emission as an indicator of ‘biological quality’, in: Recent Advances in Biophoton Research and its Applications, pp. 415–419. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientifid, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  88. Ruth, B., Experimental investigations on ultraweak photon emission, in: Electromagnetic Bio-Information, 2nd edn, pp. 128–143. Eds F. A. Popp, U. Warnke, H. L. König and W. Peschka. Urban & Schwarzenberg, München-Wien-Baltimore 1989.

    Google Scholar 

  89. Ruth, B., and Popp, F. A., Experimentelle Untersuchungen zur ultraschwachen Photonenemission biologischer Systeme. Z. Naturforsch.C31 (1976) 741–745.

    Article  CAS  PubMed  Google Scholar 

  90. Schamhart, D. H. J., and van Wijk, R., Photon emission and the degree of differentiation, in: Photon Emission from Biological Systems, pp. 137–152. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  91. Scholz, W., Staszkiewicz, U., Popp, F. A., and Nagl, W., Light-Stimulated ultraweak photon reemission of human amnion cells and Wish cells. Cell Biophysics13 (1988) 55–63.

    Article  CAS  PubMed  Google Scholar 

  92. Shen, X., Han, X., Tian, J., Zhao, F., Xu, L., and Li, X., Spontaneous luminescence from soybeanRhizobium bacteroids. FEMS Microbiology Lett.81 (1991) 335–340.

    Article  Google Scholar 

  93. Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.

    Article  CAS  Google Scholar 

  94. Slawinska, D., and Slawinski, J., Low-level luminescence from biological objects, in: Chemi- and Bioluminescence, pp. 495–531. Ed. J. g. Burr. Marcel Dekker, Inc., New York, Basel 1985.

    Google Scholar 

  95. Slawinska, D., and Polewski, K., Spectral analysis of plant chemiluminescence: participation of polyphenols and aldehydes in light-producting relations, in: Photon Emission from Biological Systems, pp. 226–247. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  96. Slawinski, J., and Popp, F. F., Temperature hysteresis of low level luminescence from plants and its thermodynamical analysis. J. Pl. Physiol.130 (1987) 111–123.

    Article  Google Scholar 

  97. Slawinski, J., Luminescence research and its relation to ultraweak cell radiation. Experientia44 (1988) 559–571.

    Article  CAS  PubMed  Google Scholar 

  98. Slawinski, J., Grabikowski, E., and Ciesla, L., Spectral distribution of ultraweak luminescence from germinating plants. J. Luminesc.24/25 (1981) 791–794.

    Article  Google Scholar 

  99. Slawinski, J., Present status and prospects of PEBS' investigations, in: Photon Emission from Biological Systems, pp. 5–21. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  100. Smith, C. W., Jafary-Asl, A. H., Choy, R. Y. S., and Monro, J. A., The emission of low intensity electromagnetic radiation from multiple allergy patients and other biological systems, in: Photon Emission from Biological Systems, pp. 110–126. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  101. Sweeney, B. M., The loss of the circadian rhythm in photosynthesis in an old strain ofGonyaulax polyedra. Pl. Physiol.80 (1986) 978–981.

    Article  CAS  Google Scholar 

  102. Swinbanks, D., Body light points to health. Nature324 (1986) 203.

    Article  CAS  PubMed  Google Scholar 

  103. Tombesi, P., and Pike E. R. (Eds), Squeezed and Nonclassical Light. Plenum Press, New York and London 1989.

    Google Scholar 

  104. Tryka, S., and Koper, R., Luminescence of cereal grain subjected to the effect of mechanical loads, in: Photon Emission from Biological Systems, pp. 248–254. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  105. van Wijk, R., and van Aken, H., Spontaneous and light-induced photon emission by rat hepatocytes and by hepatoma cells, in: Recent Advances in Biophoton Research and its Applications, pp. 207–229. Eds F. A. Popp, K. H. Li and Q. Gu. World Scientific, Singapore, New Jersey, London, Hong Kong 1992.

    Chapter  Google Scholar 

  106. van Wijk, R., Regulatory aspects of low intensity photon emission. Experientia44 (1988) 586–593.

    Article  PubMed  Google Scholar 

  107. Veselowskii, V. A., Sekamova, Y. N., and Tarusov, B. N., Mechanism of ultraweak spontaneous luminescence of organisms. Biophysics8 (1963) 147.

    Google Scholar 

  108. Vigny, P., and Duquesne, M., On the fluorescence properties of nucleotides and polynucleotides at soom temperature, in: Excited States of Biological Molecules, pp. 167–177. Ed. J. B. Birks. J. Wiley, London 1976.

    Google Scholar 

  109. Wolkowski, Z. W., Hierarchical aspects of synergy and cohence in biological systems, in: Photon Emission from Biological Systems, pp. 22–50. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  110. Yanbastiev, M. I., On some applied-medical aspects of biophotons, in: Photon Emission from Biological Systems, pp. 184–198. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  111. Yoda, B., Goto, Y., Saeki, A., and Inaba, H., Chemiluminescence of smoker's blood and its possible relationship to cigarette smoke components, in: Photon Emission from Biological Systems, pp. 199–210. Eds B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski and W. Strek. World Scientific, Singapore 1987.

    Google Scholar 

  112. Yuen, H. P., Nonclassical light, in: Photons and Quantum Fluctuations, pp. 1–9. Eds E. R. Pike and H. Walther. Adam Hilger, Bristol and Philadelphia 1988.

    Google Scholar 

  113. Zevenboom, W., and Mur, L. C., Growth and photosynthetic response of the cyanobacteriumMicrocystis aerugnosa in relation to photoperiodicity and irradiance. Archs Microbiol.139 (1984) 232–239.

    Article  CAS  Google Scholar 

  114. Zhuravlev, A. I., Tsvylev, O. P., and Zubkova, S. M., Spontaneous endogeneous ultraweak luminescence of the mitochondria of the rat liver in conditions of normal metabolism. Biophysics18 (1973) 1101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Q., Popp, F.A. Nonlinear response of biophoton emission to external perturbations. Experientia 48, 1069–1082 (1992). https://doi.org/10.1007/BF01947994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01947994

Key words

Navigation