Skip to main content
Log in

Photobiochemistry without light

  • Multi-Author Review
  • Biophoton Emission
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Efficient excited state formation — much higher than that hitherto expected — may occur in organelles and in intact cells. Excited triplet states can be enzymatically generated in high yields by different routes. An example is the oxidation of isobutanal to acetone and formic acid, catalyzed by horseradish peroxidase. Other enzymatic systems that generate triplet carbonyls are linear aliphatic aldehydes when oxidized by peroxidase/O2, or the indole-3-acetic acid/peroxidase/O2-reaction. The latter is widespread in plants.

This new field — photobiochemistry without light — has led to a growing awareness of the idea that cells may utilize excited states to trigger photochemical processes even in the dark. Such phenomena are of considerable importance, also for the understanding of weak photon emission from biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, W., and Cilento, G., Eds, Chemical and Biological Generation of Excited States. Academic Press, New York 1982.

    Google Scholar 

  2. Adam, W., and Cilento, G., Four-membered ring peroxides as excited state equivalents: a new dimension in bioorganic chemistry. Ang. Chem. int. Ed. (Engl.)22 (1983) 529–542.

    Article  Google Scholar 

  3. Adam, W., Baader, W. J., and Cilento, G., Enol of aldehydes in the peroxidase-oxidase promoted generation of excited triplet species. Biochim. biophys. Acta881 (1986) 330–336.

    Article  CAS  PubMed  Google Scholar 

  4. Baader, W. J., Bohne, C., Cilento, G., and Nassi, L., Enzymatic generation of triplet acetone: a window to photobiochemistry without light. Biochem. Ed.14 (1986) 190–192.

    Article  CAS  Google Scholar 

  5. Baader, W. J., Bohne, C., Cilento, G., and Dunford, H. B., Peroxidase catalyzed formation of triplet acetone and chemiluminescence from isobutyraldehyde and oxygen. J. biol. Chem.260 (1985) 10217–10225.

    Article  CAS  PubMed  Google Scholar 

  6. Cadenas, E., Sies, H., Campa, A., and Cilento, G., Electronically excited states in microsomal membranes: use of chlorophyll-a as an indicator of triplet carbonyls. Photochem. Photobiol.40 (1984) 661–666.

    Article  CAS  Google Scholar 

  7. Cadenas, E., Biological chemiluminescence. Photochem. Photobiol.40 (1984) 823–830.

    Article  CAS  PubMed  Google Scholar 

  8. Cilento, G., Electronic Excitation in Dark Biological Processes. Chapter 9 in Adam and Cilento.1..

    Google Scholar 

  9. Cilento, G., Generation of electronically excited triplet species in biochemical systems. Pure appl. Chem.56 (1984) 1179–1190.

    Article  CAS  Google Scholar 

  10. Förster, T. H., Mechanism of energy transfer, in: Comprehensive Biochemistry, vol. 22, pp. 61–81. Eds M. Florkin and E. H. Stotz. Elsevier, Amsterdam 1967.

    Google Scholar 

  11. Kenten, R. H., The oxidation of phenylacetaldehyde by plant saps. Biochem. J.55 (1953) 350–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nascimento, A. L. T. O., da Fonseca, L. M., Brunetti, I. L., and Cilento, G., Intracellular generation of electronically excited states. Polymorphonuclear leukocytes challenged with a precursor of triplet acetone. Biochim. biophys. Acta881 (1986) 337–342.

    Article  CAS  PubMed  Google Scholar 

  13. Salim-Hanna, M., Campa, A., and Cilento, G., The α-oxidase system of young pea leaves.Pisum sativum as generator of electronically excited states. Excitation in the dark under natural conditions. Photochem. Photobiol.45 (1987) 695–702.

    Article  Google Scholar 

  14. Sargentini, N. J., and Smith, K. C., Much of the spontaneous mutagenesis inEscherichia coli is due to error-prone DNA repair: implications for spontaneous mutagenesis. Carcinogenesis2 (1981) 863–872.

    Article  CAS  PubMed  Google Scholar 

  15. Schulte-Herbrüggen, T., and Cadenas, E., Electronically excited state generation during the lipoxygenase-catalyzed aerobic oxidation of arachidonates. Photobiochem. Photobiophys.10 (1985) 35–51.

    Google Scholar 

  16. Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.

    Article  CAS  Google Scholar 

  17. Smith, K. C., and Sargentini, N. J., Metabolically produced ‘UV-like’ DNA damage and its role in spontaneous mutagenesis. Photochem. Photobiol.42 (1985) 801–803.

    Article  CAS  PubMed  Google Scholar 

  18. Venema, R. C., and Hug, D. H., Activation of urocanase fromPseudonoma putida by electronically excited triplet species. J. biol. Chem.260 (1985) 12190–12193.

    Article  CAS  PubMed  Google Scholar 

  19. Villablanca, M., and Cilento, G., Enzymatic generation of electronically excited states by electron transfer. Photochem. Photobiol.42 (1985) 591–597.

    Article  CAS  Google Scholar 

  20. White, E. H., Miano, J. D., Watkins, C. J., and Breaux, E. J., Chemically produced excited states. Ang. Chem. int. Ed. (Engl.)13 (1971) 229–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilento, G. Photobiochemistry without light. Experientia 44, 572–576 (1988). https://doi.org/10.1007/BF01953304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953304

Key words

Navigation