Skip to main content

Advertisement

Log in

Biological electric fields and rate equations for biophotons

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballantine LE (1990) Quantum mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Brizhik L et al (2001) Delayed luminescence of biological systems arising from correlated many-soliton states. Phys Rev E 64:031902

    Article  CAS  Google Scholar 

  • Chang JJ (2008) Physical properties of biophotons and their biological functions. Indian J Exp Biol 46:371

    PubMed  Google Scholar 

  • Cifra M, Pospisil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B: Biol 139:2

    Article  CAS  Google Scholar 

  • Dittes FM (2000) The decay of quantum systems with a small number of open channels. Phys Rep 339:215

    Article  CAS  Google Scholar 

  • Fonda L et al (1978) Decay theory of unstable quantum systems. Rep Prog Phys 41:587

    Article  CAS  Google Scholar 

  • Gaemers KJF, Visser TD (1988) Deviations from exponential decay in quantum mechanics. Phys A 153:234

    Article  Google Scholar 

  • Giacosa F, Pagliara G (2012) (Oscillating) non-exponential decays of unstable states. arXiv:1204.1896v2, [nucl-th]

  • Gurwitsch AG (1911) Untersuchungen über den Zeitlichen Faktor der Zellteilung. Archir für Entwicklungs Mechanik der Organismen 32:447

    Article  Google Scholar 

  • Gurwitsch AG (1922) Über Ursachen der Zellteilung. Archir für Entwicklungs Mechanik der Organismen 52:167

    Article  Google Scholar 

  • Gurwitsch AG (1923) Die Natur des spezifischen Erregens der Zellteilung. Archir für Entwicklungs Mechanik der Organismen 100:11

    Google Scholar 

  • Khalfin LA (1957) Contribution to the decay theory of a quasi-stationary state. Zh Eksp Teor Fiz 33:1371 (1957). [Sov Phys JETP 6:1053 (1958)]

  • Khalfin LA (1968) Phenomenological theory of K0 mesons and the non-exponential character of the decay. Pis’ma Zh Eksp Teor Fiz 8:106

    CAS  Google Scholar 

  • Mandel L, Wolfe E (1995) In: Optical coherence and quantum optics. Cambridge University Press, Cambridge, pp 908–915

    Book  Google Scholar 

  • Merzbacher E (1961) Quantum mechanics,1st edn. Wiley, New York

    Google Scholar 

  • Popp FA, Ruth B, Bahr W, Böhm J, Graß P, Grolig G, Rattemeyer M, Schmidt HG, Wulle P (1981) Emission of visible and ultraviolet radiation by active biological systems. Collect Phenom 3:187

    Google Scholar 

  • Popp FA, Li KH, Mei WP, Galle M, Neurohr R (1988) Physical aspects of biophotons. Experientia 44:576

    Article  CAS  PubMed  Google Scholar 

  • Popp FA, Zhang J, Chang JJ (2000) Sci China Ser C 43:507

    Google Scholar 

  • Popp FA, Chang JJ, Herzog A, Yan Z, Yan Y (2002) Evidence of non-classical (squeezed) light in biological systems. Phys Lett A 293:98

    Article  CAS  Google Scholar 

  • Popp FA, Yan Y (2002) Delayed luminescence of biological systems in terms of coherent states. Phys Lett A 293:93

    Article  CAS  Google Scholar 

  • Popp FA (2005) Quantum phenomena of biological systems as documented by biophotonics. In: Dragoman D et al (eds) The Frontiers Collection. Springer, Berlin

    Google Scholar 

  • Pospisil P, Prasad A, Mc Marek (2014) Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B: Biol 139:11

    Article  CAS  Google Scholar 

  • Rastogi A, Pospisil P (2010) Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand. Skin Res Technol 16:365

    PubMed  Google Scholar 

  • Rattemeyer M, Popp FA, Nagl W (1981) Evidence of photon emission from DNA in living systems. Naturwissenschaften 68:572

    Article  CAS  PubMed  Google Scholar 

  • Schamhart DHJ, van Wijk R (1987) Photon emission and the degree of differentiation. In: Jezowska-Trzebiatowska B, Kochel B, Slawinski J (eds) Photon Emission from Biological Systems, vol 137. World Scientific, Singapore, pp 137–152

    Google Scholar 

  • Scholz W, Staszkiewicz U, Popp FA, Nagl W (1988) Light-stimulated ultraweak photon reemission of human amnion cells and wish cells. Cell Biophys 13:55

    Article  CAS  PubMed  Google Scholar 

  • Scordino A et al (2000) Delayed luminescence and cells structure organization. J Photochem Photobiol 56:181

    Article  CAS  Google Scholar 

  • Takeda M, Tanno Y, Kobayashi M, Usa M, Ohuchi N, Satomi S, Inaba H (1998) A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett 127:155

    Article  CAS  PubMed  Google Scholar 

  • Van Wijk R (2001) Bio-photons and bio-communication. J Sci Explor 15:183

    Google Scholar 

  • Verhulst PF (1845) Recherches mathmatiques sur la loi d’accroissement de la population. Nouv mm de l’Academie Royale des Sci et Belles-Lettres de Bruxelles 18:1

  • Verhulst PF (1847) Deuxime mmoire sur la loi d’accroissement de la population. Mm de l’Academie Royale des Sci, des Lettres et des Beaux-Arts de Belgique 20:1

  • Weron A, Weron K (1985) Stable measures and processes in statistical physics. In: Probability in Banach spaces V. Proceedings of the International Conference held in Medford, USA, July 16–27, 1984. Lecture Notes in Mathematics, vol 1153. Springer, Berlin, pp 440–452

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvermann, M., Srivastava, Y.N., Swain, J. et al. Biological electric fields and rate equations for biophotons. Eur Biophys J 44, 165–170 (2015). https://doi.org/10.1007/s00249-015-1011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1011-3

Keywords

Navigation