Skip to main content
Log in

Quantification of ischemic stress during repeated coronary artery occlusion in the dog a method for validation of therapeutic effects

I. Estimation of O2-debt and O2-repayment

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In 9 open-chest mongrel dogs 4–6 intermittent 3-min occlusions of the LAD artery were performed with time intervals of about 45 min. Using a μ-computer, the following variables, were calculated online: energy demand according to the Bretschneider equation (Et) from digitized hemodynamic data; myocardial oxygen consumption (M\(\dot V\)O2) from fiberoptically measured coronary sinus oxygen saturation and coronary sinus blood flow. Coronary occlusion led to a decrease in M\(\dot V\)O2 in comparison to Et. The integral of the difference between M\(\dot V\) 2 and E1 over the entire occlusion time yielded a total O2-deficiency (DO2) of 76 (±12%) μl O2/g ischemic tissue and a correlation coefficient with the weights of the intravitally stained ischemic areas of r=0.96. Additional O2-uptake in relation to Et during the early perfusion period yielded a correlation to the size of the ischemic area of r=0.95 and an average O2-repayment (RO2) of 32 (±14%) μl O2/g ischemic tissue. The determination of total myocardial O2-deficiency during ischemic stress as well as determination of O2-repayment during the early reperfusion period could be used to estimate the extent of ischemic stressed myocardium. Subsequently, the evaluation of pharmacological effects on myocardial ischemia should be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretschneider HJ (1967) Aktuelle Probleme der Koronardurchblutung und des Myokardstoffwechsels. Regensburger ärztl Fortbildung XV/1:1

    Google Scholar 

  2. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covel JW, Ross J jr, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67

    PubMed  Google Scholar 

  3. Opie LH (1980) Myocardial infarct size. Part 1. Basic considerations. Am Heart J 100:355

    PubMed  Google Scholar 

  4. Opie LH (1980) Myocardial infarct size. Part 2. Comparison of anti-infarct effects of beta-blockade, glucose-insulin-potassium, nitrates and hyaluronidase. Am Heart J 100:531

    PubMed  Google Scholar 

  5. Coffman JD, Gregg DE (1961) Oxygen metabolism and oxygen debt repayment after myocardial ischemia. Am J Physiol 201 (5), 881

    PubMed  Google Scholar 

  6. Kettler D, Braun U, Cott LA, Heiss HW, Hensel I, Martel J, Paschen K, Bretschneider HJ (1971) Kombination von Piritramid und N2O — ein neues Narkoseverfahren. Teil I: Tierexperimentelle Untersuchungen. Z prakt. Anästh Wiederbeleb 6:329

    Google Scholar 

  7. Sigmund-Duchanova H, Baller D, Bretschneider HJ, Prennschütz-Schützenau H, Piesker KH, Veencbusch H, Zipfel J, Hellige G (1979) Experimental validation of methods for the measurement of coronary sinus blood flow in man. Basic Res Cardiol 74:277

    Google Scholar 

  8. Bretschneider HJ, Cott LA, Hellige G, Hensel I, Kettler D, Martel J (1971a) A new hemodynamic parameter consisting of 5 additive determinants for estimation of the O2-consumption of the left ventricle. Proc Internat Union Physiol Sci IX. XXV. Internat Congr, Munich, p 663

  9. Bretschneider HJ (1972) Die hämodynamischen Determinanten des myokardialen Sauerstoffverbrauchs. In: Dengler HJ (ed): Die therapeutische Anwendung β-sympathikolytischer Stoffe. Stuttgart New York, p 45

  10. Baller D, Bretschneider HJ, Hellige G (1979) Validity of myocardial oxygen consumption parameters. Clin Cardiol 2:317

    PubMed  Google Scholar 

  11. Vennebusch H, Hellige G, Prennschütz-Schützenau H, Sigmund-Duchanova H, Bretschneider HJ (1978) Untersuchungen zur Zuverlässigkeit der Sauerstoffsättigungs- und Sauerstoffgehaltsbestimmungen mit verschiedenen Geräten. Z Kardiol 67:139

    PubMed  Google Scholar 

  12. Gudbjarnason S, Mathes P, Ravens KG (1970) Functional compartmentation of ATP and creatine phosphate in heart muscle. J Molec Cell Cardiol 1:325

    Google Scholar 

  13. Braasch W, Gudbjarnason S, Puri PS, Ravens KG, Bing RJ (1968) Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anaesthetized dogs. Circulat Res 23:429

    PubMed  Google Scholar 

  14. Puri PS (1975) Contractile and Biochemical Effects of Coronary Reperfusion After Extended Periods of Coronary Occlusion. Am J Cardiol 36:244

    PubMed  Google Scholar 

  15. Ruiter IH, Spaan IAE, Lairol JD (1978) Transient oxygen uptake during myocardial reactive hyperemia in the dog. Am J Physiol 235 (1), H87-H94

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft. SFB 89-Kardiologie Göttingen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoeft, A., Korb, H., Baller, D. et al. Quantification of ischemic stress during repeated coronary artery occlusion in the dog a method for validation of therapeutic effects. Basic Res Cardiol 79, 27–37 (1984). https://doi.org/10.1007/BF01935804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935804

Key words

Navigation