Skip to main content

Physiology and Pathophysiology of Coronary Circulation

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

Coronary blood flow (CBF) is regulated in order to match oxygen requirements by myocardial cells and may increase up to fivefold, compared to baseline (coronary flow reserve), due to maximal myocardial oxygen demand, as a result of maximal dilatation of small resistance coronary arteries (arterioles and pre-arterioles). The regulation of CBF is mediated by metabolic, neural, circulating, and physical (vascular and extravascular) factors. An inadequate CBF for myocardial oxygen requirement results in myocardial ischemia. The pathophysiologic mechanisms responsible for myocardial ischemia (either in conditions of increased oxygen requirement or at rest) include atherosclerotic coronary flow-limiting stenosis, epicardial coronary artery spasm, coronary microvascular dysfunction and coronary thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Coronary flow reserve:

Ratio between CBF achieved during maximal dilatation of resistance coronary arteries and CBF in basal conditions.

Fractional flow reserve:

Ratio between pressures distal and proximal to a coronary stenosis during maximal vasodilatation (usually induced by adenosine).

References

  • Altman JD, Klassen CL, Bache RJ (1995) Cyclooxygenase blockade limits blood flow to collateral-dependent myocardium during exercise. Cardiovasc Res 30:697–704

    CAS  PubMed  Google Scholar 

  • Armour JA, Randall WC (1995) Canine left ventricular intramyocardial pressures. Am J Physiol 220:1833–1839

    Google Scholar 

  • Beanlands RSB, Muzik O, Melon P et al (1995) Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 26:1465–1475

    CAS  PubMed  Google Scholar 

  • Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD (2003) Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 146:84–90

    PubMed  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  • Bertrand ME, LaBlanche JM, Tilmant PY, Thieuleux FA, Delforge MR, Carre AG, Asseman P, Berzin B, Libersa C, Laurent JM (1982) Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary angiography. Circulation 65:1299–1306

    CAS  PubMed  Google Scholar 

  • Beyar R, Sideman S (1997) Dynamic interaction between myocardial contraction and coronary flow. Adv Exp Med Biol 430:123–137

    CAS  PubMed  Google Scholar 

  • Beyer AM, Gutterman DD (2012) Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52:814–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bombeli T, Mueller M, Haeberli A (1997) Anticoagulant properties of the vascular endothelium. Thromb Haemost 77:408–423

    CAS  PubMed  Google Scholar 

  • Braunwald E (1999) Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol 34:1365–1368

    CAS  PubMed  Google Scholar 

  • Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    CAS  PubMed  Google Scholar 

  • Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    CAS  PubMed  Google Scholar 

  • Camici P, Marracini P, Gistri R et al (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8:221–226

    CAS  PubMed  Google Scholar 

  • Campbell WB, Gebremedhin D, Pratt PF et al (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    CAS  PubMed  Google Scholar 

  • Cannon RO 3rd, Rosing DR, Maron BJ et al (1985) Myocardial ischaemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71:234–243

    PubMed  Google Scholar 

  • Canty JM Jr (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    PubMed  Google Scholar 

  • Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    CAS  PubMed  Google Scholar 

  • Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM (1993). Effect of hyperventilation and mental stress on coronary blood flow in syndrome X. Br Heart J 69:516–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JW, Hsu NW, Wu TC et al (2002) Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 90:974–982

    CAS  PubMed  Google Scholar 

  • Chilian WM (1997) Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 95:522–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG (1997) Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J 18:108–116

    CAS  PubMed  Google Scholar 

  • Chutkow WA, Pu J, Wheeler MT et al (2002) Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J Clin Invest 110:203–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cianflone D, Lanza GA, Maseri A (1995) Microvascular angina in patients with normal coronary arteries and with other ischaemic syndromes. Eur Heart J 16:96–103

    PubMed  Google Scholar 

  • Clarke JG, Davies GJ, Kerwin R, Hackett D, Larkin S, Dawbarn D, Lee Y, Bloom SR, Yacoub M, Maseri A (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1:1057–1059

    CAS  PubMed  Google Scholar 

  • Coggins DL, Flynn AE, Austin RE et al (1990) Non uniform loss of regional flow reserve during myocardial ischemia in dogs. Circ Res 67:253–264

    CAS  PubMed  Google Scholar 

  • Corbalán R, Larrain G, Nazzal C et al (2001) Association of noninvasive markers of coronary artery reperfusion to assess microvascular obstruction in patients with acute myocardial infarction treated with primary angioplasty. Am J Cardiol 88:342–346

    PubMed  Google Scholar 

  • De Bruyne B, Banohuin T, Melin J et al (1994) Coronary flow reserve calculated from pressure measurements in humans. Circulation 89:1013–1022

    PubMed  Google Scholar 

  • De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) FAME 2 trial investigators. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001

    PubMed  Google Scholar 

  • DeFily DV, Chilian WM (1995) Coronary microcirculation: autoregulation and metabolic control. Basic Res Cardiol 90:112–118

    CAS  PubMed  Google Scholar 

  • Dellsperger KC (1996) Potassium channels and the coronary circulation. Clin Exp Pharmacol Physiol 23:1096–1101

    CAS  PubMed  Google Scholar 

  • Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    CAS  PubMed  Google Scholar 

  • Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    PubMed  Google Scholar 

  • Dubois-Rande JL, Dupouy P, Aptecar E et al (1995) Comparison of the effects of exercise and cold pressor test on the vasomotor response of normal and atherosclerotic coronary arteries and their relation to the flow-mediated mechanism. Am J Cardiol 76:467–473

    CAS  PubMed  Google Scholar 

  • Duffy SJ, Castle SF, Harper RW et al (1999) Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation 100:1951–1957

    CAS  PubMed  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    CAS  PubMed  Google Scholar 

  • Eshaghian S, Kaul S, Shah PK (2007) Cardiac amyloidosis: new insights into diagnosis and management. Rev Cardiovasc Med 8:189–199

    PubMed  Google Scholar 

  • Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  • Feigl EO (1998) Neural control of coronary blood flow. J Vasc Res 35:85–92

    CAS  PubMed  Google Scholar 

  • Fleming I, Busse R (1999) NO: the primary EDRF. J Mol Cell Cardiol 31:5–14

    CAS  PubMed  Google Scholar 

  • Gillespie MN, Booth DC, Friedman BJ, Cunningham MR, Jay M, DeMaria AN (1988) fMLP provokes coronary vasoconstriction and myocardial ischemia in rabbits. Am J Physiol 254:H481–H486

    CAS  PubMed  Google Scholar 

  • Gorman MW, Tune JD, Richmond KN et al (2000) Quantitative analysis of feed forward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 89:1093–1111

    Google Scholar 

  • Gould KL, Carabello BA (2003) Why angina in aortic stenosis with normal coronary arteriograms? Circulation 107:3121–3123

    PubMed  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    CAS  PubMed  Google Scholar 

  • Gregorini L, Marco J, Kozakova M et al (1999) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99:482–490

    CAS  PubMed  Google Scholar 

  • Hamasaki S, Arima S, Fukumoto N et al (1997) Tanaka H. Mechanisms of limited maximum coronary flow in severe single-vessel coronary artery disease in humans due to vertical steal. Am J Cardiol 80:1597–1601

    CAS  PubMed  Google Scholar 

  • Hein TW, Belardinelli L, Kuo L (1999) Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels. J Pharmacol Exp Ther 291:655–664

    CAS  PubMed  Google Scholar 

  • Hoffman JI (1987) A critical review of coronary reserve. Circulation 75:6–11

    Google Scholar 

  • Hoffman JIE, Baer RW, Hanley FL et al (1985) Regulation of transmural myocardial blood flow. J Biochem Eng 107:2–9

    CAS  Google Scholar 

  • Holmvang G, Fry S, Skopicki HA, Abraham SA et al (1999) Relation between coronary “steal” and contractile function at rest in collateral-dependent myocardium of humans with ischemic heart disease. Circulation 99:2510–2516

    CAS  PubMed  Google Scholar 

  • Inoue K, Hamada M, Ohtsuka T et al (2004) Myocardial microvascular abnormalities observed by intravenous myocardial contrast echocardiography in patients with hypertrophic cardiomyopathy. Am J Cardiol 94:55–58

    PubMed  Google Scholar 

  • Irvine T, Kenny A (1997) Aortic stenosis and angina with normal coronary arteries: the role of coronary flow abnormalities. Heart 78:213–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida T, Hirata K, Sakoda T et al (1998) 5-HT1Dbeta receptor mediates the supersensitivity of isolated coronary artery to serotonin in variant angina. Chest 113:243–244

    CAS  PubMed  Google Scholar 

  • Ishizaka H, Kuo L (1997) Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity. Am J Physiol 273:H104–H112

    CAS  PubMed  Google Scholar 

  • Jaffe R, Dick A, Strauss BH (2010) Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention: a systematic approach. JACC Cardiovasc Interv 3:695–704

    PubMed  Google Scholar 

  • Jain M, Upadaya S, Zarich SW (2013) Serial evaluation of microcirculatory dysfunction in patients with takotsubo cardiomyopathy by myocardial contrast echocardiography. Clin Cardiol 36:531–534

    PubMed  Google Scholar 

  • Jones CJ, Kuo L, Davis MJ, Chilian WM (1995) Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 29:585–596

    CAS  PubMed  Google Scholar 

  • Julius BK, Vassalli G, Mandinov L et al (1999) Alpha-adrenoceptor blockade prevents exercise-induced vasoconstriction of stenotic coronary arteries. J Am Coll Cardiol 33:1499–1505

    CAS  PubMed  Google Scholar 

  • Kang S, Yang Y (2007) Coronary microvascular reperfusion injury and no-reflow in acute myocardial infarction. Clin Invest Med 30:E133–E145

    PubMed  Google Scholar 

  • Katsumata N, Shimokawa H, Seto M et al (1997) Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1beta. Circulation 96:4357–4363

    CAS  PubMed  Google Scholar 

  • Kern MJ, Puri S, Bach RG et al (1999) Abnormal coronary flow velocity reserve after coronary artery stenting in patients: role of relative coronary reserve to assess potential mechanisms. Circulation 100:2491–2498

    CAS  PubMed  Google Scholar 

  • Klassen GA, Armour JA, Garner JB (1987) Coronary circulatory pressure gradients. Can J Physiol Pharmacol 65:520–531

    CAS  PubMed  Google Scholar 

  • Klassen CL, Traverse JH, Bache RJ (1999) Nitroglycerin dilates coronary collateral vessels during exercise after blockade of endogenous NO production. Am J Physiol 277:H918–H923

    CAS  PubMed  Google Scholar 

  • Klocke FJ (1983) Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties. J Am Coll Cardiol 1:31–41

    CAS  PubMed  Google Scholar 

  • Kosa I, Blasini R, Schneider-Eicke J et al (1999) Early recovery of coronary flow reserve after stent implantation as assessed by positron emission tomography. J Am Coll Cardiol 34:1036–1041

    CAS  PubMed  Google Scholar 

  • Kramer CM, Rogers WJ, Theobald TM et al (1996) Remote noninfarcted region dysfunction soon after first anterior myocardial infarction: a magnetic resonance tagging study. Circulation 94:660–666

    CAS  PubMed  Google Scholar 

  • Kugiyama K, Murohara T, Yasue H et al (1995) Increased constrictor response to acetylcholine of the isolated coronary arteries from patients with variant angina. Int J Cardiol 52:223–233

    CAS  PubMed  Google Scholar 

  • Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    CAS  PubMed  Google Scholar 

  • Lamping KG (1997) Response of native and stimulated collateral vessels to serotonin. Am J Physiol 272:H2409–H2415

    CAS  PubMed  Google Scholar 

  • Lanza GA, Crea F (2010) Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation 121:2317–2325

    PubMed  Google Scholar 

  • Lanza GA, Maseri A (1996) Diagnosis and treatment of coronary artery spasm. Cardiol Rev 1:1–4

    Google Scholar 

  • Lanza GA, Pedrotti P, Pasceri V et al (1996) Autonomic changes associated with spontaneous coronary spasm in patients with variant angina. J Am Coll Cardiol 28:1249–1256

    CAS  PubMed  Google Scholar 

  • Lanza GA, De Candia E, Romagnoli E et al (2003) Increased platelet sodium-hydrogen exchanger activity in patients with variant angina. Heart 89:935–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanza GA, Careri G, Crea F (2011) Mechanisms of coronary artery spasm. Circulation 124:1774–1782

    PubMed  Google Scholar 

  • Lerman A, Holmes DR Jr, Bell MR et al (1995) Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 92:2426–2431

    CAS  PubMed  Google Scholar 

  • Lüscher TF, Oemar BS, Boulanger CM et al (1996) Molecular and cellular biology of endothelin and its receptors. In: Lindpainter K, Ganten D (eds) Molecular reviews. Chapman & Hall, London, pp 96–107

    Google Scholar 

  • Masaki T (1995) Possible role of endothelin in endothelial regulation of vascular tone. Annu Rev Pharmacol Toxicol 35:235–255

    CAS  PubMed  Google Scholar 

  • Maseri A (1995) Ischemic heart disease. Churchill Livingstone, New York

    Google Scholar 

  • Maseri A (2000) From syndromes to specific disease mechanisms. The search for the causes of myocardial infarction. Ital Heart J 1:253–257

    CAS  PubMed  Google Scholar 

  • Maseri A, Chierchia S (1980) Coronary vasospasm in ischemic heart disease. Chest 78:210–215

    CAS  PubMed  Google Scholar 

  • Maseri A, Crea F, Lanza GA (1999) Coronary vasoconstriction: where do we stand in 1999. An important, multifaceted but elusive role. Cardiologia 44:115–118

    CAS  PubMed  Google Scholar 

  • Masumoto A, Mohri M, Shimokawa H et al (2002) Suppression of coronary artery spasm by the rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105:1545–1547

    CAS  PubMed  Google Scholar 

  • McCarthy PA, Pegge NC, Prendergast BD et al (2001) The physiological role of endogenous endothelin in the regulation of human coronary vasomotor tone. J Am Coll Cardiol 37:137–143

    Google Scholar 

  • Miller FJ Jr, Dellsperger KC, Gutterman DD (1997) Myogenic constriction of human coronary arterioles. Am J Physiol 273:H257–H264

    CAS  PubMed  Google Scholar 

  • Milo M, Nerla R, Tarzia P, Infusino F, Battipaglia I, Sestito A, Lanza GA, Crea F (2013) Coronary microvascular dysfunction after elective percutaneous coronary intervention: correlation with exercise stress test results. Int J Cardiol 168:121–125

    PubMed  Google Scholar 

  • Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H, Takeshita A (1998) Angina pectoris caused by coronary microvascular spasm. Lancet 351:1165–1169

    CAS  PubMed  Google Scholar 

  • Mongiardo R, Finocchiaro ML, Beltrame J et al (1996) Low incidence of serotonin-induced occlusive coronary artery spasm in patients with recent myocardial infarction. Am J Cardiol 78:84–87

    CAS  PubMed  Google Scholar 

  • Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer BE (1991). Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 68:996–1003

    CAS  PubMed  Google Scholar 

  • Nakao K, Ohgushi M, Yoshimura M et al (1997) Hyperventilation as a specific test for diagnosis of coronary artery spasm. Am J Cardiol 80:545–549

    CAS  PubMed  Google Scholar 

  • Nalbantgil I, Onder R, Altintig A et al (1998) Therapeutic benefits of cilazapril in patients with syndrome X. Cardiology 89:130–133

    CAS  PubMed  Google Scholar 

  • Neglia D, L’Abbate A (2005) Coronary microvascular dysfunction and idiopathic dilated cardiomyopathy. Pharmacol Rep 57:151–155

    PubMed  Google Scholar 

  • Niccoli G, Burzotta F, Galiuto L, Crea F (2009) Myocardial no-reflow in humans. J Am Coll Cardiol 54:281–292

    PubMed  Google Scholar 

  • Nishikawa Y, Ogawa S (1997) Importance of nitric oxide in the coronary artery at rest and during pacing in humans. J Am Coll Cardiol 29:85–92

    CAS  PubMed  Google Scholar 

  • Ohta H, Suzuki J, Akima T, Kawai N, Hanada K, Nishikibe M (1998) Hemodynamic effect of endothelin antagonists in dogs with myocardial infarction. J Cardiovasc Pharmacol 31:S255–S257

    CAS  PubMed  Google Scholar 

  • Ong P, Athanasiadis A, Hill S, Vogelsberg H, Voehringer M, Sechtem U (2008) Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients with Acute Coronary Syndrome) study. J Am Coll Cardiol 52:523–527

    PubMed  Google Scholar 

  • Petronio AS, Amoroso G, Limbruno U et al (1999) Endothelin-1 release from atherosclerotic plaque after percutaneous transluminal coronary angioplasty in stable angina pectoris and single-vessel coronary artery disease. Am J Cardiol 84:1085–1088

    CAS  PubMed  Google Scholar 

  • Pizzi C, Manfrini O, Fontana F, Bugiardini R (2004) Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac syndrome X: role of superoxide dismutase activity. Circulation 109:53–58

    CAS  PubMed  Google Scholar 

  • Porenta G, Cherry S, Czernin J et al (1999) Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging. Eur J Nucl Med 26:1465–1474

    CAS  PubMed  Google Scholar 

  • Porto I, Belloni F, Niccoli G et al (2011) Filter no-reflow during percutaneous coronary intervention of saphenous vein grafts: incidence, predictors and effect of the type of protection device. EuroIntervention 7:955–961

    PubMed  Google Scholar 

  • Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, Cianflone D, Sanna T, Sasayama S, Maseri A (2000) Major racial differences in coronary constrictor response between Japanese and caucasians with recent myocardial infarction. Circulation 101:1102–1108

    CAS  PubMed  Google Scholar 

  • Pupita G, Maseri A, Kaski JC et al (1990) Myocardial ischemia caused by distal coronary-artery constriction in stable angina pectoris. N Engl J Med 323:514–520

    CAS  PubMed  Google Scholar 

  • Rosen SD, Lorenzoni R, Kaski JC, Foale RA, Camici PG (1999) Effect of alpha1-adrenoceptor blockade on coronary vasodilator reserve in cardiac syndrome X. J Cardiovasc Pharmacol 34:554–560

    CAS  PubMed  Google Scholar 

  • Rutishauser W (1999) The Denolin lecture. Towards measurement of coronary blood flow in patients and its alteration by interventions. Eur Heart J 20:1076–1083

    CAS  PubMed  Google Scholar 

  • Saetrum Opgaard O, Edvinsson L (1996) Effect of parasympathetic and sensory transmitters on human epicardial coronary arteries and veins. Pharmacol Toxicol 78:273–279

    CAS  PubMed  Google Scholar 

  • Saetrum Opgaard O, Edvinsson L (1997) Mechanical properties and effects of sympathetic co-transmitters on human coronary arteries and veins. Basic Res Cardiol 92:168–180

    CAS  PubMed  Google Scholar 

  • Saetrum Opgaard O, Gulbenkian S, Edvinsson L (1997) Innervation and effects of vasoactive substances in the coronary circulation. Eur Heart J 18:1556–1568

    CAS  PubMed  Google Scholar 

  • Saitoh S, Zhang C, Tune JD et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621

    CAS  PubMed  Google Scholar 

  • Saitoh S, Matsumoto K, Kamioka M, Ohkawara H, Kaneshiro T, Ishibashi T, Maruyama Y (2009) Novel pathway of endothelin-1 and reactive oxygen species in coronary vasospasm with endothelial dysfunction. Coron Artery Dis 20:400–408

    PubMed  Google Scholar 

  • Schachinger V, Zeiher AM (1995) Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis. Circulation 92:2087–2094

    CAS  PubMed  Google Scholar 

  • Schultz A, Lavie L, Hochberg I et al (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100:547–552

    CAS  PubMed  Google Scholar 

  • Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE (1993) Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 88:993–1003

    CAS  PubMed  Google Scholar 

  • Song JK, Lee SJ, Kang DH et al (1996) Ergonovine echocardiography as a screening test for diagnosis of vasospastic angina before coronary angiography. J Am Coll Cardiol 27:1156–1161

    CAS  PubMed  Google Scholar 

  • Spaan JAE (1995) Mechanical determinants of myocardial perfusion. Basic Res Cardiol 90:89–102

    CAS  PubMed  Google Scholar 

  • Tanaka M, Fujiwara H, Onodera T et al (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Crake T, Kaski JC et al (1995) Enhanced vasomotor responses of complex coronary stenoses to acetylcholine in stable angina pectoris. Am J Cardiol 75:725–728

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Davies TC et al (1997a) Inhibition of nitric oxide synthesis during the cold pressor test in patients with coronary artery disease. Am J Cardiol 79:1676–1679

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Tentolouris C, Crake T et al (1997b) Basal and flow-mediated nitric oxide production by atheromatous coronary arteries. J Am Coll Cardiol 29:1256–1262

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Davies GJ, Toutouzas PC (1999) Vasomotion of coronary arteries: from nitrates to nitric oxide. Cardiovasc Drugs Ther 13:295–300

    CAS  PubMed  Google Scholar 

  • Traverse JH, Judd D, Bache RJ (1996) Dose-dependent effect of endothelin-1 on blood flow to normal and collateral-dependent myocardium. Circulation 93:558–566

    CAS  PubMed  Google Scholar 

  • Tune JD, Richmond KN, Gorman MW et al (2002) Control of coronary blood flow during exercise. Exp Biol Med 227:238–250

    CAS  Google Scholar 

  • van Hoeven KH, Factor SM (1990) Endomyocardial biopsy diagnosis of small vessel disease: a clinicopathologic study. Int J Cardiol 26:103–110

    PubMed  Google Scholar 

  • Vanhoutte PM (2003) Endothelial control of vasomotor function: from health to coronary disease. Circ J 67:572–575

    CAS  PubMed  Google Scholar 

  • Versaci F, Tomai F, Nudi F et al (1996) Differences of regional coronary flow reserve assessed by adenosine thallium-201 scintigraphy early and six months after successful percutaneous transluminal coronary angioplasty or stent implantation. Am J Cardiol 78:1097–1102

    CAS  PubMed  Google Scholar 

  • Yada T, Richmond KN, Van Bibber R et al (1999) Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 276:H1425–H1433

    CAS  PubMed  Google Scholar 

  • Yamakado T, Kasai A, Masuda T et al (1996) Exercise-induced coronary spasm: comparison of treadmill and bicycle exercise in patients with vasospastic angina. Coron Artery Dis 7:819–822

    CAS  PubMed  Google Scholar 

  • Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M (1996) Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 94:3232–3238

    CAS  PubMed  Google Scholar 

  • Yokoyama I, Momomura S, Ohtake T et al (1999) Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 100:117–122

    CAS  PubMed  Google Scholar 

  • Zeiher AM, Krause T, Schächinger V, Minners J, Moser E (1995) Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 91:2345–2352

    CAS  PubMed  Google Scholar 

Further Reading

  • Crea F, Lanza GA, Camici PG (2014) Coronary microvascular dysfunction. Springer, Milan

    Google Scholar 

  • Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maseri A, Davies G, Hackett D, Kaski JC (1990) Coronary artery spasm and vasoconstriction. The case for a distinction. Circulation 81:1983–1991

    CAS  PubMed  Google Scholar 

  • Muller JM, Davis MJ, Chilian WM (1996) Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 32:668–678

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Antonio Lanza M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lanza, G.A., Figliozzi, S., Parrinello, R. (2014). Physiology and Pathophysiology of Coronary Circulation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics