Skip to main content
Log in

New microscopic description of liquid3He

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We introduce and study numerically new wave functions to describe the ground state of liquid He3. The antisymmetrization required by the fermionic nature of He3 is implemented through a “BCS” pairing scheme rather than through a Slater determinant of plane waves: with only two variational parameters, we obtain results comparable with the best results available with a Slater determinant. This new wave function predicts that the local antiferromagnetic fluctuations should be much smaller than what is expected from the previous description, and that the momentum distribution is smooth, structureless as opposed to the step-like function obtained using a Slater description. Those two predictions could be tested using neutron scattering. Conceptually, the disappearance of the Fermi surface raises the question of the general validity of Landau's Fermi liquid theory. It suggests that strongly interacting fermions could form a new liquid state which is here described as a resonating assembly of small Cooper pairs. This is much in the same spirit as the newly proposed “strange metal” (RVB) phase for highT c superconductors — for which the electrons are though to be very strongly correlated — and hence not describable by the “canonical” Fermi liquid theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L., Lifschitz E.: Statistical physics. Vol. 9, part II. New York: Pergamon Press 1981

    Google Scholar 

  2. Luttinger, J.M.: Phys. Rev.119, 1153 (1960); Balian, R., Dominicis, C. de: Physica30, 1927 (1964)

    Google Scholar 

  3. Wu, F.Y., Feenberg, E.: Phys. Rev.128, 141 (1962)

    Google Scholar 

  4. Ceperley, D., Chester, G.V., Kalos, M.H.: Phys. Rev. B16, 3081 (1977)

    Google Scholar 

  5. Schmidt, K.E., Lee, M.A., Kalos, M.H., Chester, G.V.: Phys. Rev. Lett.47, 807 (1981)

    Google Scholar 

  6. Lee, M.A., Schmidt, K.E., Kalos, M.H., Chester, G.V.: Phys. Rev. Lett.46, 728 (1981)

    Google Scholar 

  7. Levesque, D.: Phys. Rev. B21, 5159 (1980)

    Google Scholar 

  8. Levesque, D., Lhuillier, C.: Phys. Rev. B23, 2203 (1981)

    Google Scholar 

  9. Manousakis, E., Fantoni, S., Pandharipande, V.R.: Phys. Rev. B28, 3370 (1983)

    Google Scholar 

  10. Pandharipande, V.R., Pieper, S.C., Wiringa, P.B.: Phys. Rev. B34, 4571 (1986)

    Google Scholar 

  11. Whitlock, P., Panoff, R.M.: Can. J. Phys.65, 1409 (1987)

    Google Scholar 

  12. Gutzwiller, M.C.: Phys. Rev.137A, 1726 (1965)

    Google Scholar 

  13. Vollhardt, D.: Rev. Mod. Phys.56, 99 (1984)

    Google Scholar 

  14. Bouchaud, J.P., Georges, A., Lhuillier, C.: J. Phys. (Paris)49, 553 (1988)

    Google Scholar 

  15. Bouchaud, J.P., Lhuillier, C.: Europhys. Lett.3, 1273 (1987)

    Google Scholar 

  16. Lantto, L.J., Jackson, A.D., Siemens, P.J.: Phys. Lett.68A, 311 (1977)

    Google Scholar 

  17. Usmani, Q.N., Friedman, B., Pandharipande, V.R.: Phys. Rev. B25, 4502 (1982)

    Google Scholar 

  18. Panoff, R.: In: Condensed matter theories. Vashista, P. (ed.) New York: Plenum Press 1986

    Google Scholar 

  19. Hallock, R.: J. Low Temp. Phys.9, 109 (1972)

    Google Scholar 

  20. Hess, R., Pines, D.: J. Low Temp. Phys.72, 247 (1988)

    Google Scholar 

  21. Sköld, K., Pelizzari, C., Kleb, R., Ostrowski, G.: Phys. Rev. Lett.37, 842 (1976)

    Google Scholar 

  22. Sokol, P.E., Sköld, K., Price, D.L., Kleb, R.: Phys. Rev. Lett.54, 909 (1985)

    Google Scholar 

  23. Mook, H.A.: Phys. Rev. Lett.55, 2452 (1985)

    Google Scholar 

  24. Stringari, S.: Phys. Rev. B35, 2038 (1987)

    Google Scholar 

  25. Silver, R.N., Reiter, G.: Phys. Rev. B35, 3647 (1987); Silver, R.N.: Preprints

    Google Scholar 

  26. Carlson, J., Panoff, R.M., Schimidt, K.E., Whitlock, P.A., Kalos, M.: Phys. Rev. Lett.55, 2367 (1985)

    Google Scholar 

  27. Castaing, B.: J. Phys. (Paris) Lett.41, 333 (1980)

    Google Scholar 

  28. Anderson, P.W.: In: Frontiers and borderlines in many particle physics. International School of Physics “Enrico Fermi”. Schrieffer, J.R., Broglia, R.A. (eds.). Amsterdam: North Holland 1987;

    Google Scholar 

  29. Kivelson, S., Sethna, J., Rokhsar, D.: Phys. Rev. B35, 8865 (1987)

    Google Scholar 

  30. Owen, J.C., Ripka, G.: Phys. Rev. B25, 4914 (1982)

    Google Scholar 

  31. Fantoni, S.: In: Spin polarized quantum systems. Stringari, S. (ed.) (to be published) Viviani, M., Buendia, E., Fantoni, S., Rosati, S.: Phys. Rev. B38, 4523 (1988)

  32. Bonfait, G., Puech, L., Castaing, B., Thoulouze, D.: Europhys. Lett.1, 521 (1986);

    Google Scholar 

  33. Dutta, A., Archie, C.N.: Phys. Rev. Lett.55, 2949 (1985)

    Google Scholar 

  34. Stringari, S., Barranco, M., Polls, A., Nacher, P.J., Laloë: J. Phys. (Paris)48, 1337 (1987)

    Google Scholar 

  35. Bouchaud, J.P., Lhuillier, C.: Europhys. Lett.3, 481 (1987); Jpn. J. Appl. Phys. (LT 18)26, Suppl. 3, 207 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchaud, J.P., Lhuillier, C. New microscopic description of liquid3He. Z. Physik B - Condensed Matter 75, 283–289 (1989). https://doi.org/10.1007/BF01321815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321815

Keywords

Navigation