Skip to main content
Log in

Structural features of cation transport ATPases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Several cation transport ATPases, sharing the common feature of a phosphorylated intermediate in the process of ATP utilization, are compared with respect to their subunit composition and amino acid sequence. The main component of these enzymes is a polypeptide chain of MW slightly exceeding 100,000, comprising an extramembranous globular head which is connected through a stalk to a membrane-bound region. With reference to the Ca2+ ATPase of sarcoplasmic reticulum, it is proposed that the catalytic (ATP binding and phosphorylation) domain resides in the extramembranous globular head, while cation binding occurs in the membrane region. Therefore, these two functional domains are separated by a distance of approximately 50 Å. Alignment of amino acid sequences reveals extensive homology in the isoforms of the same ATPases, but relatively little homology in different cation ATPases. On the other hand, all cation ATPases considered in this analysis retain a consensus sequence of high homology, spanning the distance between the phosphorylation site and the preceding transmembrane helix. It is proposed that this sequence provides long-range functional linkage between catalytic and cation-binding domains. Thereby, translocation of bound cation occurs through a channel formed by transmembrane helices linked to the phosphorylation site. Additional sequences at the carboxyl terminal provide regulatory domains in certain ATPases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastide, F., Meissner, G., Fleischer, S., and Post, R. L. (1973).J. Biol. Chem. 248, 8385–8391.

    Google Scholar 

  • Bigelow, D. J., and Inesi, G. (1991).Biochemistry 30, 2113–2125.

    Google Scholar 

  • Bigelow, D. J., Squier, T. C., and Inesi, G. (1992).J. Biol. Chem., in press.

  • Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H. (1986).Cell 44, 597–607.

    Google Scholar 

  • Burk, S. E., Lytton, J., MacLennan, D. H., and Shull, G. E. (1989).J. Biol. Chem. 264, 18561–18568.

    Google Scholar 

  • Campbell, A. M., Kessler, P. D., Sagara, Y., Inesi, G., and Fambrough, D. M. (1991).J. Biol. Chem. 266, 16050–16055.

    Google Scholar 

  • Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989a).Nature (London) 339, 476–478.

    Google Scholar 

  • Clarke, D. M., Maruyama, K., Loo, T. W., Leberer, E., Inesi, G., and MacLennan, D. H. (1989b).J. Biol. Chem. 264, 11246–11251.

    Google Scholar 

  • DeAncos, J., and Inesi, G. (1988).Biochemistry 27, 1793–1803.

    Google Scholar 

  • Deamer, D., and Baskin, R. (1969).J. Cell Biol. 42, 296–307.

    Google Scholar 

  • De Meis, L., and Vianna, A. (1979).Annu. Rev. Biochem. 48, 275–292.

    Google Scholar 

  • Degani, C., and Boyer, P. D. (1973).J. Biol. Chem. 248, 8222–8226.

    Google Scholar 

  • Dupont, Y., Harrison, S., and Hasselbach, W. (1973).Nature (London) 244, 554–558.

    Google Scholar 

  • Dux, L., and Martonosi, A. (1983).J. Biol. Chem. 258, 10111–10115.

    Google Scholar 

  • Eggermont, J. A., Wuytack, F., DeJaegere, S., Nelles, L., and Casteels, R. (1989).Biochem. J. 260, 757–761.

    Google Scholar 

  • Eggermont, J. A., Wuytack, F., Verbist, J., and Casteels, R. (1990).Biochem. J. 271, 649–653.

    Google Scholar 

  • Forte, J. G., Forte, G. M., and Saltman, P. (1988).J. Cell Phys. 293, 304.

    Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D. (1975).Annu. Rev. Physiol. 37, 13–55.

    Google Scholar 

  • Glynn, I. M., & Karlish, S. J. D. (1990).Annu. Rev. Biochem. 59, 171–205.

    Google Scholar 

  • Greeb, J., and Shull, G. E. (1989).J. Biol. Chem. 264, 18569–18576.

    Google Scholar 

  • Gryczynski, I., Wiczk, W., Inesi, G., Squier, T. C., and Lakowicz, J. R. (1989).Biochemistry 28, 3490–3498.

    Google Scholar 

  • Gunteski-Hamblin, A.-M., Greeb, J., and Shull, G. E. (1988).J. Biol. Chem. 263, 15032–15040.

    Google Scholar 

  • Gutíerrez-Merino, C., Munkonge, F. M., Mata, A. M., East, J. M., Levinson, B. L., Napier, R. M., and Lee, A. G. (1987).Biochim. Biophys. Acta 897, 207–216.

    Google Scholar 

  • Herbette, L. G., DeFoor, P., Fleischer, S., Paolini, P., Scarpa, A., and Blasie, J. K. (1985).Biochim. Biophys. Acta 817, 103–122.

    Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S. (1988).Nature (London) 335, 645–648.

    Google Scholar 

  • Inesi, G., and Asai, H. (1968).Arch. Biochem. Biophys. 126, 469–477.

    Google Scholar 

  • Inesi, G., and Kirtley, M. E. (1990).J. Membr. Biol. 116, 1–8.

    Google Scholar 

  • Inesi, G., Sumbilla, C., and Kirtley, M. E. (1990).Physiol. Rev. 70, 749–760.

    Google Scholar 

  • Inesi, G., Lewis, D., Nikic, D., Hussain, A., and Kirtley, M. E. (1992).Adv. Enzymol.,65, 185–215.

    Google Scholar 

  • James, P., Inui, M., Tada, M., Chiesi, M., and Carafoli, E. (1989a).Nature (London) 342, 90–92.

    Google Scholar 

  • James, P. H., Pruschy, M., Vorherr, T. E., Penniston, J. T., and Carafoli, E. (1989b).Biochemistry 28, 4253–4258.

    Google Scholar 

  • Jardetzky, O. (1966).Nature (London) 211, 969–970.

    Google Scholar 

  • Jencks, W. P. (1989).J. Biol. Chem. 264, 18855–18858.

    Google Scholar 

  • Kaprielian, Z., Campbell, A. M., and Fambrough, D. M. (1989).Mol. Brain Res. 6, 55–60.

    Google Scholar 

  • Karin, N. J., Kaprielian, Z., and Fambrough, D. M. (1989).Mol. Cell. Biol. 9, 1978–1986.

    Google Scholar 

  • Kawakami, K., Nojima, H., Ohta, T., and Nagano, K. (1986).Nucleic Acids Res. 14, 2833–2844.

    Google Scholar 

  • Kirtley, M. E., and Inesi, G. (1992). InStructure and Function of Biological Membranes (Yeagle, P., ed.), Telford Press, Caldwell, New Jersey, pp. 893–914.

    Google Scholar 

  • Korczak, B., Zarain-Herzberg, A., Brandl, C. J., Ingles, C. J., Green, N. M., and MacLennan, D. H. (1988).J. Biol. Chem. 263, 4813–4819.

    Google Scholar 

  • Lompre, A. M., De La Bastie, D., Boheler, K. R., and Schwartz, K. (1989).FEBS Lett. 249, 35–41.

    Google Scholar 

  • Lytton, J., and MacLennan, D. H. (1988).J. Biol. Chem. 263, 15024–15031.

    Google Scholar 

  • Lytton, J., Zarain-Herzberg, A., Periasamy, M., and MacLennan, D. H. (1989).J. Biol. Chem. 264, 7059–7065.

    Google Scholar 

  • MacLennan, D. H., Brandl, C. J., Korczak, B., and Green, N. M. (1985).Nature (London) 316, 696–700.

    Google Scholar 

  • Maeda, M., Ishizaki, J., and Futai, M. (1988).Biochem. Biophys. Res. Commun. 157, 203–209.

    Google Scholar 

  • Maeda, M., Oshiman, K. I., Tanura, S., and Futai, M. (1990).J. Biol. Chem. 265, 9027–9032.

    Google Scholar 

  • Makinose, M. (1969).Eur. J. Biochem. 10, 74–82.

    Google Scholar 

  • Milburn, M. V., Privé, G. G., Milligan, D. L., Scott, W. G., Yeh, J., Jancarik, J., Koshland, D. E., Jr., and Kim, S.-H. (1991).Science 254, 1342–1347.

    Google Scholar 

  • Mitchell, P. (1957).Nature (London) 180, 134–136.

    Google Scholar 

  • Mitchinson, C., Wilderspin, A., Trinnaman, B. J., and Green, N. M. (1982).FEBS Lett. 146, 87–92.

    Google Scholar 

  • Nakamoto, R. K., and Inesi, G. (1986).FEBS Lett. 194, 258–262.

    Google Scholar 

  • Palmero, I., and Sastre, L. (1989).J. Mol. Biol. 210, 737–748.

    Google Scholar 

  • Pick, U., and Karlish, S. J. (1980).Biochim. Biophys. Acta 626, 255–261.

    Google Scholar 

  • Reuben, M. A., Lasater, L. S., and Sachs, G. (1990).Proc. Natl. Acad. Sci. USA 87, 6767–6771.

    Google Scholar 

  • Sagara, Y., and Inesi, G. (1991).J. Biol. Chem. 266, 13503–13506.

    Google Scholar 

  • Serrano, R., Kielland-Brandt, M. C., and Fink, G. R. (1986).Nature (London) 319, 689–693.

    Google Scholar 

  • Shull, G. E., and Greeb, J. (1988).J. Biol. Chem. 263, 8646–8657.

    Google Scholar 

  • Shull, G. E. and Lingrel, J. B. (1986).J. Biol. Chem. 261, 16788–16791.

    Google Scholar 

  • Shull, G. E., Schwartz, A., and Lingrel, J. B. (1985).Nature (London) 316, 691–695.

    Google Scholar 

  • Shull, G. E., Greeb, J., and Lingrel, J. B. (1986).Biochemistry 25, 8125–8132.

    Google Scholar 

  • Squier, T. C., Bigelow, D. J., Garcia de Ancos, J., and Inesi, G. (1987).J. Biol. Chem. 262, 4748–4754.

    Google Scholar 

  • Squier, T. C., Bigelow, D. J., Fernandez-Belda, F. J., De Meis, L., and Inesi, G. (1990).J. Biol. Chem. 265, 13713–13720.

    Google Scholar 

  • Stokes, D. L., and Green, N. M. (1990).J. Mol. Biol. 213, 529–538.

    Google Scholar 

  • Strehler, E. E., Strehler-Page, M.-A., Vogel, G., and Carafoli, E. (1989).Proc. Natl. Acad. Sci. USA 86, 6908–6912.

    Google Scholar 

  • Strehler, E. E., James, P., Fischer, R., Heim, R., Vorherr, T., Filoteo, A. G., Penniston, J. T., and Carafoli, E. (1990).J. Biol. Chem. 265, 2835–2842.

    Google Scholar 

  • Sumbilla, C., Cantilina, T., Collins, J. H., Malak, H., Lakowicz, J. R., and Inesi, G. (1991).J. Biol. Chem. 266, 12682–12689.

    Google Scholar 

  • Taylor, W. R., and Green, N. M. (1989).Eur. J. Biochem. 179, 241–248.

    Google Scholar 

  • Taylor, K. A., Dux, L., and Martonosi, A. (1986).J. Mol. Biol. 187, 417–427.

    Google Scholar 

  • Verma, A. K., Filoteo, A. G., Stanford, D. R., Wieben, E. D., Penniston J. T., Strehler, E. E., Fischer, R., Heim, R., Vogel, G., Mathews, S., Strehler-Page, M.-A., James, P., Vorherr, T., Krebs, J., and Carafoli, E. (1988).J. Biol. Chem. 263, 14152–14159.

    Google Scholar 

  • Watanabe, T., and Inesi, G. (1982).Biochemistry 21, 3254–3259.

    Google Scholar 

  • Yamamoto, T., and Tonomura, Y. (1968).J. Biochem. (Tokyo) 64, 137–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inesi, G., Kirtley, M.R. Structural features of cation transport ATPases. J Bioenerg Biomembr 24, 271–283 (1992). https://doi.org/10.1007/BF00768848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00768848

Key words

Navigation