Skip to main content

Abstract

Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM (2015) P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J Adv Res 6(1):45–62

    Article  CAS  PubMed  Google Scholar 

  • Adsit GS, Vaidyanathan R, Galler CM, Kyle JW, Makielski JC (2013) Channelopathies from mutations in the cardiac sodium channel protein complex. J Mol Cell Cardiol 61:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. Carrier proteins and active membrane transport. ISBN-10: 0-8153-3218-1

    Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2010) Essential cell biology. Garland Science, New York

    Google Scholar 

  • Allen TW, Andersen OS, Roux B (2006) Molecular dynamics potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem 124:251–267

    Article  CAS  PubMed  Google Scholar 

  • Alleva K, Chara O, Amodeo G (2012) Aquaporins: another piece in the osmotic puzzle. FEBS Lett 586(19):2991–2999. ISSN 0014-5793

    Article  CAS  PubMed  Google Scholar 

  • Asher V, Warren A, Shaw R, Sowter H, Bali A, Khan R (2011) The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int 11:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafuzzaman M, Tuszynski JA (2013) Membrane biophysics. Springer-Verlag Berlin Heidelberg, New York, pp 9–30

    Book  Google Scholar 

  • Ashwell JD, Schwartz RH, Mitchell JB, Russo A (1986) Effect of gamma radiation on resting B lymphocytes. I. Oxygen-dependent damage to the plasma membrane results in increased permeability and cell enlargement. J Immunol 136(10):3649–3656

    CAS  PubMed  Google Scholar 

  • Ateshian GA, Morrison B, Hung CT (2010) Modeling of active transmembrane transport in a mixture theory framework. Ann Biomed Eng 38(5):1801–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Becchetti A, Munaron L, Arcangeli A (2013) The role of ion channels and transporters in cell proliferation and cancer. Frontiers in Physiology 4:312

    Google Scholar 

  • Bökel C, Brand M (2014) Endocytosis and signaling during development. Cold Spring Harb Perspect Biol 6(3):a017020

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman A, Xiao S, Schoenbach KS, Pakhomov AG (2008) Inhibition of voltage-gated calcium channels of cell plasma membrane by nanosecond electric pulses. In: Bioelectromagnetics Society’s 30th annual meeting, San Diego, pp 75–76, June 8–12

    Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Brackenbury WJ, Isom LL (2011) Na+ channel beta subunits: overachievers of the ion channel family. Front Pharmacol 2:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackenbury WJ, Djamgoz MB, Isom LL (2008) An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brew HM, Hallows JL, Tempel BL (2003) Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1. 1. J Physiol 548(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brini M, Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3(2):1–15

    Article  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J. 280(21):5385–5397

    Google Scholar 

  • Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156(8):1185–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burganos VN (2017) Modeling and simulation of membrane structure and transport properties, reference module in chemistry. Mol Sci Chem Eng. ISBN 9780124095472

    Google Scholar 

  • Cao G, Zhang M, Miao J, Li W, Wang J, Lu D, Xia J (2015) Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells. J Radiat Res 56(2):294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  • Cleal K, He L, Watson PD, Jones AT (2013) Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Curr Pharm Des 19(16):2878–2894

    Article  CAS  PubMed  Google Scholar 

  • Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Cui C, Merritt R, Fu L, Pan Z (2017) Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica B 7(1):3–17R

    Google Scholar 

  • Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, Pamplona M-GX, Marti RM, Canti C (2013) T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res 26:874–885

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 99(9):L72–L74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J (2014) T-type Ca2+channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol Cancer Res 12:348–358

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg RS (2013) Ionic interactions in biological and physical systems: a variational treatment. Faraday Discuss 160:279–296

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Kumon RE, Park J, Deng CX (2010) Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 142(1):31

    Article  CAS  PubMed  Google Scholar 

  • Gavrilova-Ruch O, Schonherr K, Gessner G, Schonherr R, Klapperstuck T, Wohlrab W, Heinemann SH (2002) Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol 188:137–149

    Article  CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447

    Article  CAS  PubMed  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 1:71–81

    Article  Google Scholar 

  • Gillespie D, Eisenberg RS (2002) Physical descriptions of experimental selectivity measurements in ion channels. Eur Biophys J 31:454–466

    Article  CAS  PubMed  Google Scholar 

  • Golowasch J, Nadim F (2014) Capacitance, membrane. Encyclopedia of computational neuroscience. Springer, Berlin\Heidelberg

    Google Scholar 

  • Gomulkiewicz J, Bartoszkiewicz M, Miekisz S (2001) Some remarks on ion transport across excitable membranes. I. The stationary state. Curr Top Biophys 25:3–9

    CAS  Google Scholar 

  • Gouaux E, MacKinnon R (2004) Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, Mckinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International union of pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57(4):473–508

    Article  CAS  PubMed  Google Scholar 

  • Hedfalk K, Törnroth-Horsefield S, Nyblom M, Johanson U, Kjellbom P, Neutze R (2006) Aquaporin gating. Curr Opin Struct Biol 16:447–456

    Article  CAS  PubMed  Google Scholar 

  • Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) SYMPOSIUM REVIEW: Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(17):3187–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczorowski GJ, McManus OB, Priest BT, Garcia ML (2008) Ion channels as drug targets: the next GPCRs. J Gen Physiol 131(5):399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale VP, Amin SG, Pandey MK (2015) Pandey targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim Biophys Acta 1848:2747–2755

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M (2012) IEEE Electrical Insulation Magazine 28(5):14–23

    Google Scholar 

  • Kruger LC, Isom LL (2016) Voltage-gated Na+ channels: not just for conduction. Cold Spring Harb Perspect Biol 8(6):a029264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulbacka J, Pucek A, Kotulska M, Dubińska-Magiera M, Rossowska J, Rols MP, Wilk KA (2016a) Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry 110:19–31

    Article  CAS  PubMed  Google Scholar 

  • Kulbacka J, Pucek A, Wilk KA, Dubińska-Magiera M, Rossowska J, Kulbacki M, Kotulska M (2016b) The effect of millisecond pulsed electric fields (msPEF) on intracellular drug transport with negatively charged large Nanocarriers made of solid lipid nanoparticles (SLN): in vitro study. J Membr Biol 249(5):645–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lin H (2011) Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 82(1):10–21

    Google Scholar 

  • Li M, Xiong Z-G (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3(2):156–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Shu Y (2014) Role of solute carriers in response to anticancer drugs. Molecular and Cellular Therapies 2(1):15

    Google Scholar 

  • Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery 14(8):543–560

    Google Scholar 

  • Linton KJ (2007) Structure and function of ABC transporters. Physiology (Bethesda) 22:122–130

    Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York

    Google Scholar 

  • McKeown L, Swanton L, Robinson P, Jones OT (2008) Surface expression and distribution of voltage gated potassium channels in neurons (review). Mol Membr Biol 25(4):332–343

    Article  CAS  PubMed  Google Scholar 

  • Millward MJ, Cantwell BM, Munro NC, Robinson A, Corris PA, Harris AL (1993) Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomized study. Br J Cancer 67:1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min KA, Shin MC, Yu F, Yang M, David AE, Yang VC, Rosania GR (2013) Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano 7(3):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Misonou H, Mohapatra DP, Menegola M, Trimmer JS (2005) Calcium-and metabolic state-dependent modulation of the voltage-dependent Kv2. 1 channel regulates neuronal excitability in response to ischemia. J Neurosci 25(48):11184–11193

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra DP, Misonou H, Sheng-Jun P, Held JE, Surmeier DJ, Trimmer JS (2009) Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2. 1 potassium channel. Channels 3(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscella A, Calabriso N, Vetrugno C, Fanizzi FP, De Pascali SA, Storelli C (2011) The platinum (II) complex [Pt(O,O′-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells. Biochem Pharmacol 81:91–103

    Article  CAS  PubMed  Google Scholar 

  • Nejad SM, Hosseini H, Akiyama H, Tachibana K (2016) Reparable cell Sonoporation in suspension: Theranostic potential of microbubble. Theranostics 6(4):446–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesin V, Bowman AM, Xiao S, Pakhomov AG (2012) Cell permeabilization and inhibition of voltage-gated Ca2+ and Na+ channel currents by nanosecond pulsed electric fields. Bioelectromagnetics 33(5):394–404

    Article  CAS  PubMed  Google Scholar 

  • O’Grady SM, Lee SY (2005) Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 37:1578–1594

    Article  PubMed  Google Scholar 

  • O’Malley HA, Isom LL (2015) Sodium channel b subunits: emerging targets in channelopathies. Annu Rev Physiol 77:481–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(Suppl 1):51–63

    PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Kolb J, White J, Shevin R, Pakhomova ON, Schoenbach KS (2007a) Membrane effects of ultrashort (nanosecond) electric stimuli. Society for Neuroscience 37th Annual Meeting, San Diego, Nov 2–7 2007, Neuroscience meeting planner CD-ROM, Presentation No.: 317.14.

    Google Scholar 

  • Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007b) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys. 465(1):109–118

    Google Scholar 

  • Pardo LA, Stühmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Patel F, Brackenbury WJ (2015) Dual roles of voltage-gated sodium channels in development and cancer. Int J Dev Biol 59(7–9):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlin M, Kandušer M, Reberšek M, Pucihar G, Hart FX, Magjarevićcacute R, Miklavčič D (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88(6):4378–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perland E, Fredriksson R (2016) Classification Systems of Secondary Active Transporters. Trends Pharmacol Sci S0165-6147(16):30166–30163

    Google Scholar 

  • Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 1(1):37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao G, Duan W, Chatwin C, Sinclair A, Wang W (2010) Electrical properties of breast cancer cells from impedance measurement of cell suspensions. J Phys Conf Ser 224:012081

    Article  Google Scholar 

  • Rask-Andersen M, Masuram S, Fredriksson R, Schiöth HB (2013) Solute carriers as drug targets: Current use, clinical trials and prospective. Molecular Aspects of Medicine 34(2-3):702–710

    Google Scholar 

  • Ray S, Kassan A, Busija AR, Rangamani P, Patel HH (2016) The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 310(3):181–192

    Google Scholar 

  • Rim HK, Lee HW, Choi IS, Park JY, Choi HW, Choi JH, Cho YW, Lee JY, Lee KT (2012) T-type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells. Bioorg Med Chem Lett 22:7123–7126

    Article  CAS  PubMed  Google Scholar 

  • Rosazza C, Buntz A, Rieß T, Wöll D, Zumbusch A, Rols M-P (2013) Intracellular tracking of single-plasmid DNA particles after delivery by electroporation. Mol Ther 21(12):2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runas KA, Malmstadt N (2015) Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter 11(3):499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selwan EM, Finicle BT, Kim SM, Edinger AL (2016) Attacking the supply wagons to starve cancer cells to death. FEBS Lett 590(7):885–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JH, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ (2015) Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 593(6):1361–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigekawa M, Iwamoto T (2001) Cardiac Na+-Ca2+ exchange. Circ Res 88:864–876

    Article  CAS  PubMed  Google Scholar 

  • Shin JM, Munson K, Sachs G (2011) Gastric H+, K+-ATPase. Compr Physiol 1(4):2141–2153

    PubMed  Google Scholar 

  • Shukla S, Ohnuma S, Ambudkar SV (2011 May) Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets 12(5):621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45

    Article  CAS  PubMed  Google Scholar 

  • Steller L, Kreir M, Salzer R (2012) Natural and artificial ion channels for biosensing platforms. Anal Bioanal Chem 402(1):209–230

    Article  CAS  PubMed  Google Scholar 

  • Strehler EE (2013) Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J Pharm Pharm Sci 16(2):190–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9(8):597–614

    Article  CAS  PubMed  Google Scholar 

  • Tamošiūnas M, Mir LM, Chen WS, Lihachev A, Venslauskas M, Šatkauskas S (2016) Intracellular delivery of bleomycin by combined application of electroporation and sonoporation in vitro. J Membr Biol 249(5):677–689

    Article  PubMed  Google Scholar 

  • Tan Q, Ferrier GA, Chen BK, Wang C, Sun Y (2012) Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement. Biomicrofluidics 6:034112

    Article  PubMed Central  Google Scholar 

  • Taylor JM, Simpson RU (1992) Inhibition of cancer cell growth by calcium channel antagonists in the arrhythmic mouse. Cancer Res 52:2413–2418

    CAS  PubMed  Google Scholar 

  • Tombola F, Pathak MM, Isacoff EY (2006) How does voltage open an ion channel? Ann Rev Cell Dev Biol 22:23–52

    Article  CAS  Google Scholar 

  • Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Bhattacharjee A, Zuo Z, Hu F, Honkanen RE, Berggren PO, Li M (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 140:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    CAS  PubMed  Google Scholar 

  • Waterbeemd H, Lennernäs H, Artursson P (2006) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. John Wiley & Sons, Weinheim

    Google Scholar 

  • Wezgowiec J, Derylo MB, Teissie J, Orio J, Rols M-P, Kulbacka J, Saczko J, Kotulska M (2013) Electric field-assisted delivery of photofrin to human breast carcinoma cells. J Membr Biol 246(10):725–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Q, Gao Z, Wang W, Li M (2008) Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends Pharmacol Sci 9(2):99–107

    Article  Google Scholar 

  • Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an verviewo for small molecules, peptides, and proteins. Methods in molecular biology (Clifton, N.J.), 1266, 29–53

    Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419(6902):35–42

    Article  CAS  PubMed  Google Scholar 

  • Yukutake Y, Hirano Y, Suematsu M, Yasui M (2009) Rapid and reversible inhibition of aquaporin-4 by zinc. Biochemist 48:12059–12061

    Article  CAS  Google Scholar 

  • Zamponi GW (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15(1):19–34

    Article  CAS  PubMed  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeghimi A, Escoffre JM, Bouakaz A (2015) Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: a electron microscopy study. Phys Biol 12:066007

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Morris ME (2003) Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther 304(3):1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Zhang WM, Zhou J, Ye QJ (2008) Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci 82:764–771

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao XT, Chen DY, Luo YN, Jiang M, Wei C, Long R, Yue WT, Wang JB, Chen J (2014) Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens Bioelectron 57:245–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Centre project SONATA BIS 6 - SONB.A040.17.001 (2016/22/E/NZ5/00671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julita Kulbacka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kulbacka, J., Choromańska, A., Rossowska, J., Weżgowiec, J., Saczko, J., Rols, MP. (2017). Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes. In: Kulbacka, J., Satkauskas, S. (eds) Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy. Advances in Anatomy, Embryology and Cell Biology, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-56895-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56895-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56894-2

  • Online ISBN: 978-3-319-56895-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics