Skip to main content

Mitochondrial Respiratory Chain Complexes

  • Chapter
  • First Online:
Membrane Protein Complexes: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 87))

Abstract

Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdrakhmanova A, Dobrynin K, Zwicker K, Kerscher S, Brandt U (2005) Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron–sulfur clusters. FEBS Lett 579(30):6781–6785. https://doi.org/10.1016/j.febslet.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  • Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U (2006) Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim Biophys Acta 1757:1676–1682. https://doi.org/10.1016/j.bbabio.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Ă… resolution of F1 ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  PubMed  Google Scholar 

  • Acin-PĂ©rez R, Bayona-Bafaluy MP, Fernández-Silva P, Moreno-Loshuertos R, PĂ©rez-Martos A, Bruno C, Moraes CT, EnrĂ­quez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Acin-PĂ©rez R, Fernández-Silva P, Peleato ML, PĂ©rez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  PubMed  CAS  Google Scholar 

  • Allegretti M, Klusch N, Mills DJ, Vonck J, Davies KM, KĂĽhlbrandt W (2015) Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–240

    Article  CAS  PubMed  Google Scholar 

  • Allen RD, Schroeder CC, Fok AK (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108(6):2233–2240

    Article  CAS  PubMed  Google Scholar 

  • Alnajjar KS, Hosler J, Prochaska L (2014) Role of the N-terminus of subunit III in proton uptake in cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 53(3):496–504. https://doi.org/10.1021/bi401535q

    Article  CAS  PubMed  Google Scholar 

  • Althoff T, Mills DJ, Popot J-L, KĂĽhlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4662–4664

    Article  CAS  Google Scholar 

  • Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268(25):18532–18541

    CAS  PubMed  Google Scholar 

  • Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110(47):18934–18939. https://doi.org/10.1073/pnas.1319247110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angerer H (2015) Eukaryotic LYR proteins interact with mitochondrial protein complexes. Biology (Basel) 4(1):133–150. https://doi.org/10.3390/biology4010133

    Google Scholar 

  • Angevine CA, Fillingame RH (2003) Aqueous access channels in subunit a of rotary ATP synthase. J Biol Chem 278:6066–6074. https://doi.org/10.1074/jbc.M210199200

    Article  CAS  PubMed  Google Scholar 

  • Anthony G, Reimann A, Kadenbach B (1993) Tissue-specific regulation of bovine heart cytochrome c oxidase activity by ADP via interaction with subunit VIa. Proc Natl Acad Sci U S A 90(5):1652–1656. https://doi.org/10.1073/pnas.90.5.1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur J Biochem 249:350–354

    Article  CAS  PubMed  Google Scholar 

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998a) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17(24):7170–7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998b) 3,5-diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252(2):325–330. https://doi.org/10.1046/j.1432-1327.1998.2520325.x

    Article  CAS  PubMed  Google Scholar 

  • Arselin G, Giraud M-F, Dautant A, Vaillier J, Brethes D, Coulary-Salin B, Schaeffer J, Velours J (2003) The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur J Biochem 270:1875–1884

    Article  CAS  PubMed  Google Scholar 

  • Babot M, Birch A, Labarbuta P, Galkin A (2014) Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta 1837(7):1083–1092. https://doi.org/10.1016/j.bbabio.2014.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker LA, Watt IN, Runswick MJ, Walker JE, Rubinstein JL (2012) Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proc Natl Acad Sci U S A 00:1–2

    Google Scholar 

  • Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landázuri MO, EnrĂ­quez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16(3):378–386. https://doi.org/10.1016/j.cmet.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katrakili N, Tokatlidis K (2009) MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 16(2):198–206. https://doi.org/10.1038/nsmb.1553

    Article  CAS  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494(7438):443–448. https://doi.org/10.1038/nature11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barquera B (2014) The sodium pumping NADH:quinone oxidoreductase (Na+-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 46(4):289–298. https://doi.org/10.1007/s10863-014-9565-9

    Article  CAS  PubMed  Google Scholar 

  • Belevich I, Verkhovsky MI, Wikström M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440(7085):829–832. https://doi.org/10.1038/nature04619

    Article  CAS  PubMed  Google Scholar 

  • Belevich G, Knuuti J, Verkhovsky MI, Wikström M, Verkhovskaya M (2011) Probing the mechanistic role of the long α-helix in subunit L of respiratory complex I from Escherichia coli by site-directed mutagenesis. Mol Microbiol 82(5):1086–1095. https://doi.org/10.1111/j.1365-2958.2011.07883.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal RA, Stock D (2004) Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284(43):29773–29783. https://doi.org/10.1074/jbc.M109.032144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry EA, De Bari H, Huang L-S (2013) Unanswered questions about the structure of cytochrome bc1 complexes. Biochim Biophys Acta Bioenerg 1827(11):1258–1277

    Article  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279(35):36562–36569

    Article  CAS  PubMed  Google Scholar 

  • Bleier L, Drose S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. BBA-Bioenergetics 1827(11–12):1320–1331. https://doi.org/10.1016/j.bbabio.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci U S A 94:14291–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekema EJ, van Breemen JFL, Brisson A, Ubbink-Kok T, Konings WN, Lolkema JS (1999) Connecting stalks in V-type ATPase. Nature 401:37–38

    Article  CAS  PubMed  Google Scholar 

  • Bonne G, Seibel P, Possekel S, Marsac C, Kadenbach B (1993) Expression of human cytochrome-c-oxidase subunits during fetal development. Eur J Biochem 217(3):1099–1107. https://doi.org/10.1111/j.1432-1033.1993.tb18342.x

    Article  CAS  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3(8):741–746. https://doi.org/10.1093/embo-reports/kvf150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T (2012) Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423(5):677–686. https://doi.org/10.1016/j.jmb.2012.09.001

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase – some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    Article  CAS  PubMed  Google Scholar 

  • Boyer PD (1997) The ATP synthase: a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92. https://doi.org/10.1146/annurev.biochem.75.103004.142539

    Article  CAS  PubMed  Google Scholar 

  • Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder P, Korn B, KĂĽhne R, Oschkinat H (2004) The oxidized subunit B8 from human complex I adopts a thioredoxin fold. Structure 12(9):1645–1654. https://doi.org/10.1016/j.str.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  • Bruno C, Santorelli FM, Assereto S, Tonoli E, Tessa A, Traverso M, Scapolan S, Bado M, Tedeschi S, Minetti C (2003) Progressive exercise intolerance associated with a new muscle-restricted nonsense mutation (G142X) in the mitochondrial cytochrome b gene. Muscle Nerve 28(4):508–511. https://doi.org/10.1002/mus.10429

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski P, Adelroth P (1998) Pathways of proton transfer in cytochrome c oxidase. J Bioenerg Biomembr 30(1):99–107. https://doi.org/10.1023/A:1020567729941

    Article  CAS  PubMed  Google Scholar 

  • Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J (2008) The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J 27(12):1736–1746. https://doi.org/10.1038/emboj.2008.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cain BD, Simoni RD (1986) Impaired proton conductivity resulting from mutations in the a subunit of F1Fo ATPase in Escherichia coli. J Biol Chem 261:10043–10050

    CAS  PubMed  Google Scholar 

  • Cain BD, Simoni RD (1988) Interaction between Glu-219 and His-245 within the a subunit of F1Fo ATPase in Escherichia coli. J Biol Chem 263:6602–6612

    Google Scholar 

  • Cano-Estrada A, Vázquez-Acevedo M, Villavicencio-Queijeiro A, Figueroa-MartĂ­nez F, Miranda-Astudillo H, Cordeiro Y, Mignaco JA, Foguel D, Cardol P, Lapaille M, Remacle C, Wilkens S, González-Halphen D (2010) Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. Biochim Biophys Acta 1797(8):1439–1448. https://doi.org/10.1016/j.bbabio.2010.02.024

    Article  CAS  PubMed  Google Scholar 

  • Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Grana O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, Escalante R (2010) MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 123(Pt 10):1674–1683. https://doi.org/10.1242/jcs.066076

    Article  CAS  PubMed  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2(2):117–126. https://doi.org/10.1074/mcp.M300014-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Article  CAS  PubMed  Google Scholar 

  • Castellani M, Covian R, Kleinschroth T, Anderka O, Ludwig B, Trumpower BL (2010) Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc1 complex: enzyme with one inactive monomer is fully active but unable to activate the second ubiquinol oxidation site in response to ligand binding at the ubiquinone reduction site. J Biol Chem 285(1):502–510. https://doi.org/10.1074/jbc.M109.072959

    Article  CAS  PubMed  Google Scholar 

  • Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430(1):1–19. https://doi.org/10.1042/BJ20100462

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS (2010) Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol 661:339–354. https://doi.org/10.1007/978-1-60761-500-2_22

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Taylor EB, Dephoure N, Heo JM, Tonhato A, Papandreou I, Nath N, Denko NC, Gygi SP, Rutter J (2012) Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15(3):348–360. https://doi.org/10.1016/j.cmet.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759. https://doi.org/10.1038/nm.3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, CH H, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155(1):160–171. https://doi.org/10.1016/j.cell.2013.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vázquez J, Enriquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature 539(7630):579–582

    Article  CAS  PubMed  Google Scholar 

  • Collinson IR, Skehel JM, Fearnley IM, Runswick MJ, Walker JE (1996) The F1Fo-ATPase complex from bovine heart mitochondria: the molar ratio of the subunits in the stalk region linking the F1 and Fo domains. Biochemistry 34:12640–12646

    Article  Google Scholar 

  • Conte A, Papa B, Ferramosca A, Zara V (2015) The dimerization of the yeast cytochrome bc(1) complex is an early event and is independent of Rip1. Biochim Biophys Acta 1853(5):987–995. https://doi.org/10.1016/j.bbamcr.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Hernandez P, Vázquez-Memije ME, Garcia JJ (2007) ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. J Biol Chem 282:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Covian R, Trumpower BL (2006) Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc(1) complex. J Biol Chem 281(41):30925–30932. https://doi.org/10.1074/jbc.M604694200

    Article  CAS  PubMed  Google Scholar 

  • D’Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15(13):2157–2169. https://doi.org/10.1093/hmg/ddl141

    Article  PubMed  CAS  Google Scholar 

  • D’Imprima E, Mills DJ, Parey K, Brandt U, KĂĽhlbrandt W, Zickermann V, Vonck J (2016) Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism. Biochim Biophys Acta 1857:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M, Moser CC, Dutton PL, Daldal F (2000) Uncovering the [2Fe2S] domain movement in cytochrome bc1 and its implications for energy conversion. Proc Natl Acad Sci U S A 97(9):4567–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, KĂĽhlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KM, Anselmi C, Wittig I, Faraldo-GĂłmez JD, KĂĽhlbrandt W (2012) Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 109(34):13602–13607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    Article  CAS  PubMed  Google Scholar 

  • Deng K, Zhang L, Kachurin AM, Yu L, Xia D, Kim H, Deisenhofer J, Yu C-A (1998) Activation of a matrix processing peptidase from the crystalline cytochrome bc complex of bovine heart mitochondria. J Biol Chem 273(33):20752–20757

    Article  CAS  PubMed  Google Scholar 

  • Deng K, Shenoy SK, Tso S-C, Yu L, Yu C-A (2001) Reconstitution of mitochondrial processing peptidase from the core proteins (subunits I and II) of bovine heart mitochondrial cytochrome bc complex. J Biol Chem 276(9):6499–6505

    Article  CAS  PubMed  Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev O, Jones PC, Jiang W, Fillingame RH (1999) Structure of the membrane domain of subunit b of the Escherichia coli F0F1 ATP synthase. J Biol Chem 274(22):15598–15604

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev OY, Altendorf K, Fillingame RH (2004) Subunit a of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent. FEBS Lett 556:35–38

    Article  CAS  PubMed  Google Scholar 

  • Dobrynin K, Abdrakhmanova A, Richers S, Hunte C, Kerscher S, Brandt U (2010) Characterization of two different acyl carrier proteins in complex I from Yarrowia lipolytica. Biochim Biophys Acta 1797(2):152–159. https://doi.org/10.1016/j.bbabio.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc complex. J Biol Chem 283(31):21649–21654. https://doi.org/10.1074/jbc.M803236200

    Article  PubMed  CAS  Google Scholar 

  • Drose S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nubel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U (2011) Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 9(8):e1001128. https://doi.org/10.1371/journal.pbio.1001128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drose S, Brandt U, Wittig I (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844(8):1344–1354. https://doi.org/10.1016/j.bbapap.2014.02.006

    Article  PubMed  CAS  Google Scholar 

  • Drose S, Stepanova A, Galkin A (2016) Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim Biophys Acta 1857(7):946–957. https://doi.org/10.1016/j.bbabio.2015.12.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005a) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudkina NV, Heinemeyer J, Keegstra W, Boekema EJ, Braun HP (2005b) Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett 579(25):5769–5772

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ (2006) Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett 580(14):3427–3432

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Oostergetel GT, Lewejohann D, Braun H-P, Boekema EJ (2010) Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim Biophys Acta 1797(2):272–277

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci U S A 108(37):15196–15200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364(2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476(7361):414–420. https://doi.org/10.1038/nature10330

    Article  CAS  PubMed  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–447

    Article  CAS  PubMed  Google Scholar 

  • Elurbe DM, Huynen MA (2016) The origin of the supernumerary subunits and assembly factors of complex I: a treasure trove of pathway evolution. Biochim Biophys Acta 1857(7):971–979. https://doi.org/10.1016/j.bbabio.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  • Esterhazy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47(12):3964–3971. https://doi.org/10.1021/bi702243b

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Jänsch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Euro L, Bloch DA, Wikström M, Verkhovsky MI, Verkhovskaya M (2008) Electrostatic interactions between FeS clusters in NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 47(10):3185–3193. https://doi.org/10.1021/bi702063t

    Article  CAS  PubMed  Google Scholar 

  • Ewart GD, Zhang YZ, Capaldi RA (1991) Switching of bovine cytochrome-c-oxidase subunit VIa isoforms in skeletal-muscle during development. FEBS Lett 292(1–2):79–84. https://doi.org/10.1016/0014-5793(91)80839-U

    CAS  PubMed  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140(2):105–134

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Morán H (1962) Low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. Circulation 26:1039–1065

    Article  PubMed  Google Scholar 

  • Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538:406–410. https://doi.org/10.1038/nature19794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillingame RH, Steed PR (2014) Half channels mediating H+ transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33(3):169–177

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, MĂĽller V (2008) An intermediate step in the evolution of ATPases – a hybrid Fo-Vo rotor in a bacterial Na+ F1Fo ATP synthase. FEBS J 275(9):1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Gabaldon T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348(4):857–870. https://doi.org/10.1016/j.jmb.2005.02.067

    Article  CAS  PubMed  Google Scholar 

  • Galati D, Srinivasan S, Raza H, Prabu SK, Hardy M, Chandran K, Lopez M, Kalyanaraman B, Avadhani NG (2009) Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 420:439–449. https://doi.org/10.1042/Bj20090214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkin A, Moncada S (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282(52):37448–37453. https://doi.org/10.1074/jbc.M707543200

    Article  CAS  PubMed  Google Scholar 

  • Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J Biol Chem 284(52):36055–36061. https://doi.org/10.1074/jbc.M109.054346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud M-F, Paumard P, Soubannier V, Vaillier J, Arselin G, Salin B, Schaeffer J, Brethes D, di Rago J-P, Velours J (2002) Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Biochim Biophys Acta 1555:174–180

    Article  CAS  PubMed  Google Scholar 

  • Giraud M-F, Paumard P, Sanchez C, Brèthes D, Velours J, Dautant A (2012) Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase. J Struct Biol 177(2):490–497. https://doi.org/10.1016/j.jsb.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  • Gnandt E, Dorner K, Strampraad MF, de Vries S, Friedrich T (2016) The multitude of iron-sulfur clusters in respiratory complex I. Biochim Biophys Acta 1857(8):1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Gogol EP, LĂĽcken U, Capaldi RA (1987) The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett 219:274–278

    Article  CAS  PubMed  Google Scholar 

  • Gorenkova N, Robinson E, Grieve DJ, Galkin A (2013) Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid Redox Signal 19(13):1459–1468. https://doi.org/10.1089/ars.2012.4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikova VG, Serebryanaya DV, Isakova EP, Belozerskaya TA, Vinogradov AD (2003) The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa. Biochem J 369(Pt 3):619–626. https://doi.org/10.1042/BJ20021165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M (2016) The architecture of the mammalian respirasome. Nature 537:639–643. https://doi.org/10.1038/nature19359

    Article  CAS  PubMed  Google Scholar 

  • Guarás A, Perales-Clemente E, Calvo E, AcĂ­n-PĂ©rez R, Loureiro-Lopez M, Pujol C, MartĂ­nez-Carrascoso I, Nunez E, GarcĂ­a-MarquĂ©s F, RodrĂ­guez-Hernández MA, CortĂ©s A, Diaz F, PĂ©rez-Martos A, Moraes CT, Fernández-Silva P, Trifunovic A, Navas P, Vazquez J, EnrĂ­quez JA (2016) The CoQH /CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep 15(1):197–209. https://doi.org/10.1016/j.celrep.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Castillo S, Baertling F, Kownatzki D, Wessels HJ, Arnold S, Brandt U, Nijtmans L (2016) The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. https://doi.org/10.1016/j.cmet.2016.09.002. (in press)

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    Article  CAS  PubMed  Google Scholar 

  • Hägerhäll C (1997) Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320:107–141

    Article  PubMed  Google Scholar 

  • Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, KĂĽhlbrandt W, Meier T (2016) Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell 63:445–456. https://doi.org/10.1016/j.molcel.2016.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakulinen JK, Klyszejko AL, Hoffmann J, Eckhardt-Strelau L, Brutschy B, Vonck J, Meier T (2012) A structural study on the architecture of the bacterial ATP synthase Fo motor. Proc Natl Acad Sci U S A 109:E2050–E2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch LP, Cox GB, Howitt SM (1995) The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J Biol Chem 270(49):29407–29412

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282(16):12240–12248

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen JK, Autio KJ, Schonauer MS, Kursu VA, Dieckmann CL, Kastaniotis AJ (2010) Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta 1797(6–7):1195–1202. https://doi.org/10.1016/j.bbabio.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309:771–774

    Article  CAS  PubMed  Google Scholar 

  • Hirst J (2011) Why does mitochondrial complex I have so many subunits? Biochem J 437(2):e1–e3. https://doi.org/10.1042/BJ20110918

    Article  CAS  PubMed  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochimica et Biophysica Acta-Bioenergetics 1604(3):135–150. https://doi.org/10.1016/S0005-2728(03)00059-8

    Article  CAS  Google Scholar 

  • Hong S, Victoria D, Crofts AR (2012) Inter-monomer electron transfer is too slow to compete with monomeric turnover in bc 1 complex. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817(7):1053–1062

    Article  CAS  Google Scholar 

  • Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, Berry EA (2006) 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281(9):5965–5972. https://doi.org/10.1074/jbc.M511270200

    Article  CAS  PubMed  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451. https://doi.org/10.1126/science.1191046

    Article  CAS  PubMed  Google Scholar 

  • Huttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267(1):111–123. https://doi.org/10.1016/S0378-1119(01)00385-7

    Article  CAS  PubMed  Google Scholar 

  • Huttemann M, Jaradat S, Grossman LI (2003a) Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb – the counterpart to testes-specific cytochrome c? Mol Reprod Dev 66(1):8–16. https://doi.org/10.1002/mrd.10327

    Article  PubMed  CAS  Google Scholar 

  • Huttemann M, Schmidt TR, Grossman LI (2003b) A third isoform of cytochrome c oxidase subunit VIII is present in mammals. Gene 312:95–102. https://doi.org/10.1016/S0378-1119(03)00604-8

    Article  CAS  PubMed  Google Scholar 

  • Indrieri A, van Randen VA, Tiranti V, Morleo M, Iaconis D, Tammaro R, D’Amato I, Conte I, Maystadt I, Demuth S, Zvulunov A, Kutsche K, Zeviani M, Franco B (2012) Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 91(5):942–949. https://doi.org/10.1016/j.ajhg.2012.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iverson TM, Luna-Chavez C, Cecchini G, Rees DC (1999) Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284:1961–1966

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Matsuura K, Oshima T (1995) Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. I. The archaeal terminal oxidase supercomplex is a functional fusion of respiratory complexes III and IV with no c-type cytochromes. J Biol Chem 270(52):30881–30892

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Ă… resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376(6542):660–669. https://doi.org/10.1038/376660a0

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit mitochondrial cytochrome bc1 complex. Science 281:64–71

    Article  CAS  PubMed  Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23(16):1548–1553. https://doi.org/10.1016/j.cub.2013.06.057

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Fillingame RH (1998) Interacting helical faces of subunits a and c in the F1F0 ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A 95:6607–6612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22:420–423

    Article  CAS  PubMed  Google Scholar 

  • Kagawa Y, Racker E (1966) Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particles. J Biol Chem 341(10):2475–2482

    Google Scholar 

  • Kane Dickson V, Silvester JA, Fearnley IM, Leslie AGW, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25(12):2911–2918

    Article  CAS  Google Scholar 

  • Kearney EB (1960) Studies on succinic dehydrogenase. XII. Flavin component of the mammalian enzyme. J Biol Chem 235:865–877

    CAS  PubMed  Google Scholar 

  • Kerscher SJ (2000) Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta 1459(2–3):274–283

    Article  CAS  PubMed  Google Scholar 

  • Kerscher S, Grgic L, Garofano A, Brandt U (2004) Application of the yeast Yarrowia lipolytica as a model to analyse human pathogenic mutations in mitochondrial complex I (NADH:ubiquinone oxidoreductase). Biochim Biophys Acta 1659:197–205. https://doi.org/10.1016/j.bbabio.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  • Kerscher S, Drose S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 45:185–222. https://doi.org/10.1007/400_2007_028

    Article  CAS  PubMed  Google Scholar 

  • Khalfaoui-Hassani B, Lanciano P, Lee DW, Darrouzet E, Daldal F (2012) Recent advances in cytochrome bc(1): inter monomer electronic communication? FEBS Lett 586:617–621. https://doi.org/10.1016/j.febslet.2011.08.032

    Article  CAS  PubMed  Google Scholar 

  • Kmita K, Wirth C, Warnau J, Guerrero-Castillo S, Hunte C, Hummer G, Kaila VRI, Zwicker K, Brandt U, Zickermann V (2015) Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I. Proc Natl Acad Sci U S A 112(18):5685–5690. https://doi.org/10.1073/pnas.1424353112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinov AA (2012) Cytochrome c oxidase: intermediates of the catalytic cycle and their energy-coupled interconversion. FEBS Lett 586(5):630–639. https://doi.org/10.1016/j.febslet.2011.08.037

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis RB (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci U S A 94(17):9085–9090. https://doi.org/10.1073/pnas.94.17.9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotlyar AB, Vinogradov AD (1990) Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta 1019(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004a) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279(46):48369–48375

    Article  CAS  PubMed  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004b) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279(25):26453–26461

    Article  CAS  PubMed  Google Scholar 

  • Krause F, Reifschneider NH, Goto S, Dencher NA (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329:583–590

    Article  CAS  PubMed  Google Scholar 

  • Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, Zeviani M (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12(1):49–52

    Article  PubMed  Google Scholar 

  • Lancaster CR, Kröger A, Auer M, Michel H (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 Ă… resolution. Nature 402:377–385

    Article  CAS  PubMed  Google Scholar 

  • Lanciano P, Lee D-W, Yang H, Darrouzet E, Daldal F (2011) Intermonomer electron transfer between the low-potential b hemes of cytochrome bc. Biochemistry 50(10):1651–1663. https://doi.org/10.1021/bi101736v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F (2013) Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. BBA-Bioenergetics 1827(11–12):1332–1339. https://doi.org/10.1016/j.bbabio.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc 1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci U S A 99(5):2800–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, AcĂ­n-PĂ©rez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, QuirĂłs PM, Calvo E, RodrĂ­guez-Hernández MA, Navas P, Cruz R, Carracedo A, LĂłpez-Otin C, PĂ©rez-Martos A, Fernández-Silva P, Fernandez-Vizarra E, EnrĂ­quez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340(6140):1567–1570. https://doi.org/10.1126/science.1230381

    Article  CAS  PubMed  Google Scholar 

  • Lau WCY, Rubinstein JL (2010) Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound VO motor. Proc Natl Acad Sci U S A 107(4):1367–1372. https://doi.org/10.1073/pnas.0911085107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau WCY, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380):214–218. https://doi.org/10.1038/nature10699

    Article  CAS  Google Scholar 

  • Lau WCY, Baker LA, Rubinstein JL (2008) Cryo-EM structure of the yeast ATP synthase. J Mol Biol 382(5):1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Kadenbach B (2001) Palmitate decreases proton pumping of liver-type cytochrome c oxidase. Eur J Biochem 268(24):6329–6334. https://doi.org/10.1046/j.0014-2956.2001.02602.x

    Article  CAS  PubMed  Google Scholar 

  • Lee HM, Das TK, Rousseau DL, Mills D, Ferguson-Miller S, Gennis RB (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Biochemistry 39(11):2989–2996. https://doi.org/10.1021/bi9924821

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2016) Respiratory cytochrome supercomplexes. In: Cytochrome complexes: evolution, structures, energy transduction, and signaling. Springer, Dordrecht, pp 585–628

    Google Scholar 

  • Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648. https://doi.org/10.1038/nature19774

    Article  CAS  PubMed  Google Scholar 

  • Levchenko M, Wuttke J-M, Römpler K, Schmidt B, Neifer K, Juris L, Wissel M, Rehling P, Deckers M (2016) Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase. Biochim Biophys Acta Mol Cell Res 1863(7):1624–1632

    Article  CAS  Google Scholar 

  • Lightowlers RN, Chrzanowska-Lightowlers ZM (2013) Human pentatricopeptide proteins: only a few and what do they do? RNA Biol 10(9):1433–1438. https://doi.org/10.4161/rna.24770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Fackelmayer OJ, Hicks DB, Preiss L, Meier T, Sobie EA, Krulwich TA (2011) Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in the c-ring stability and mobility on sodium dodecyl sulfate–polyacrylamide gel. Biochemistry 50(24):54897–55506

    Article  CAS  Google Scholar 

  • Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin Cx C protein family. J Mol Biol 393(2):356–368. https://doi.org/10.1016/j.jmb.2009.08.041

    Article  CAS  PubMed  Google Scholar 

  • Ludlam A, Brunzelle J, Pribyl T, Xu X, Gatti DL, Ackerman SH (2009) Chaperones of F1-ATPase. J Biol Chem 284:17138–17146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytovchenko O, Naumenko N, Oeljeklaus S, Schmidt B, von der Malsburg K, Deckers M, Warscheid B, van der Laan M, Rehling P (2014) The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase. EMBO J 33(15):1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maio N, Singh A, Uhrigshardt H, Saxena N, Tong WH, Rouault TA (2014) Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab 19(3):445–457. https://doi.org/10.1016/j.cmet.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Maklashina E, Kotlyar AB, Cecchini G (2003) Active/de-active transition of respiratory complex I in bacteria, fungi, and animals. Biochim Biophys Acta 1606(1–3):95–103

    Article  CAS  PubMed  Google Scholar 

  • Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Sign 19(13):1469–1480. https://doi.org/10.1089/ars.2012.4845

    Article  CAS  Google Scholar 

  • Marcet-Houben M, Marceddu G, Gabaldon T (2009) Phylogenomics of the oxidative phosphorylation in fungi reveals extensive gene duplication followed by functional divergence. BMC Evol Biol 9:295. https://doi.org/10.1186/1471-2148-9-295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matthies D, PreiĂź L, Klyszejko AL, Muller DJ, Cook GM, Vonck J, Meier T (2009) The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol 388:611–618

    Article  CAS  PubMed  Google Scholar 

  • Matthies D, Haberstock S, Joos F, Dötsch V, Vonck J, Bernhard F, Meier T (2011) Cell-free expression and assembly of ATP synthase. J Mol Biol 413(3):593–603

    Article  CAS  PubMed  Google Scholar 

  • Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, Rubinstein JL (2016) Atomic model for the membrane-embedded Vo motor of a eukaryotic V-ATPase. Nature 539:118–122. https://doi.org/10.1038/nature19828

    Article  CAS  PubMed  Google Scholar 

  • McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32(2):153–162. https://doi.org/10.1023/A:1005507913372

    Article  CAS  PubMed  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662

    Article  CAS  PubMed  Google Scholar 

  • Meier T, Ferguson SA, Cook GM, Dimroth P, Vonck J (2006) Structural investigations of the membrane-embedded rotor ring of the F-ATPase from Clostridium paradoxum. J Bacteriol 188(22):7759–7764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68(4):603–616. https://doi.org/10.1128/MMBR.68.4.603-616.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merz S, Westermann B (2009) Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol 10(9):R95. https://doi.org/10.1186/gb-2009-10-9-r95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G (2013) Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Biochim Biophys Acta 1827(11–12):1346–1361. https://doi.org/10.1016/j.bbabio.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48. https://doi.org/10.1016/j.chemphyslip.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  • Minakami S, Schindler FJ, Estabrook RW (1964) Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain. I. Effect of sulfhydryl inhibitors and phospholipase. J Biol Chem 239:2042–2048

    CAS  PubMed  Google Scholar 

  • Minauro-Sanmiguel F, Wilkens S, Garcia JJ (2005) Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci U S A 102(35):12356–12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1972) Chemiosmotic coupling in energy transduction – logical development of biochemical knowledge. J Bioenerg 3(1-2):5–24. https://doi.org/10.1007/Bf01515993

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of protonmotive function of cytochrome systems. J Theor Biol 62(2):327–367. https://doi.org/10.1016/0022-5193(76)90124-7

    Article  CAS  PubMed  Google Scholar 

  • Moore KJ, Fillingame RH (2008) Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 283:31726–31735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais VA, Haddad D, Craessaerts K, De Bock P-J, Swerts J, Vilain S, Aerts L, Overbergh L, GrĂĽnewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B (2014) PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344:203–207. https://doi.org/10.1126/science.1249161

    Article  CAS  PubMed  Google Scholar 

  • Morales-Rios E, Montgomery MG, Leslie AGW, Walker JE (2015) Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Ă… resolution. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1517542112

  • Moreno-Lastres D, Fontanesi F, GarcĂ­a-Consuegra I, MartĂ­n MA, Arenas J, Barrientos A, Ugalde C (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335. https://doi.org/10.1016/j.cmet.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller FL, Liu YH, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–49073. https://doi.org/10.1074/jbc.M407715200

    Article  CAS  PubMed  Google Scholar 

  • Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S (2010) Bovine cytochrome c oxidase structures enable O reduction with minimization of reactive oxygens and provide a proton-pumping gate. Proc Natl Acad Sci U S A 107(17):7740–7745. https://doi.org/10.1073/pnas.0910410107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308:654–658

    Article  CAS  PubMed  Google Scholar 

  • Nakai M, Endo T, Hase T, Tanaka Y, Trumpower BL, Ishiwatari H, Asada A, Bogaki M, Matsubara H (1993) Acidic regions of cytochrome c are essential for ubiquinol-cytochrome c reductase activity in yeast cells lacking the acidic QCR6 protein. J Biochem 114(6):919–925

    Article  CAS  PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie I, Aggeler R, Capaldi RA (1997) Cross-linking of the δ subunit to one of the three α subunits has no effect on functioning, as expected if δ is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase. J Biol Chem 272:16652–16656

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364(2):186–206

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E (2008) Were there any “misassignments” among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)? Biochim Biophys Acta 1777(7–8):703–710. https://doi.org/10.1016/j.bbabio.2008.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Kawaguchi K, Hagihara B (1966) Preparation and some properties of yeast mitochondria. J Biol Chem 241(8):1797–1806

    CAS  PubMed  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797(12):1891–1893. https://doi.org/10.1016/j.bbabio.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman C, Wilmes C, Tatsuta T, Langer T (2007) Prohibitins interact genetically with Atp23, a novel processing peptidase and chaperone for the F1Fo-ATP synthase. Mol Biol Cell 18:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagadala V, Vistain L, Symersky J, Mueller DM (2011) Characterization of the mitochondrial ATP synthase from yeast Saccharomyces cerevisae. J Bioenerg Biomembr 43:333–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52. https://doi.org/10.1038/46972

    Article  CAS  PubMed  Google Scholar 

  • Parsons DF (1963) Negative staining of thinly spread cells and associated virus. J Cell Biol 16:620–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons WJ, Williams RS, Shelton JM, Luo YA, Kessler DJ, Richardson JA (1996) Developmental regulation of cytochrome oxidase subunit VIa isoforms in cardiac and skeletal muscle. Am J Physiol-Heart C 270(2):H567–H574

    Article  CAS  Google Scholar 

  • Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago J-P, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21(3):221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters K, Belt K, Braun HP (2013) 3D gel map of Arabidopsis complex I. Front Plant Sci 4:153. https://doi.org/10.3389/fpls.2013.00153

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitceathly RDS, Rahman S, Wedatilake Y, Polke JM, Cirak S, Foley AR, Sailer A, Hurles ME, Stalker J, Hargreaves I, Woodward CE, Sweeney MG, Muntoni F, Houlden H, UK10K Consortium, Taanman J-W, Hanna MG (2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep 3(6):1795–1805. https://doi.org/10.1016/j.celrep.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploegman JH, Drent G, Kalk KH, Hol WG (1978) Structure of bovine liver rhodanese. I. Structure determination at 2.5 Ă… resolution and a comparison of the conformation and sequence of its two domains. J Mol Biol 123(4):557–594

    Article  CAS  PubMed  Google Scholar 

  • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, MĂĽller DJ (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6(11):1045–1052

    Article  CAS  Google Scholar 

  • Pogoryelov D, Yildiz Ă–, Faraldo-GĂłmez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16(10):1068–1073. https://doi.org/10.1038/nsmb.1678

    Article  CAS  PubMed  Google Scholar 

  • Pogoryelov D, Klyszejko AL, Krasnoselska G, Heller E-M, Leone V, Langer JD, Vonck J, MĂĽller DJ, Faraldo-GĂłmez JD, Meier T (2012) Engineering rotor ring stoichiometries in ATP synthases. Proc Natl Acad Sci U S A 109:E1599–E1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic DM (2013) Current advances in research of cytochrome c oxidase. Amino Acids 45(5):1073–1087. https://doi.org/10.1007/s00726-013-1585-y

    Article  CAS  PubMed  Google Scholar 

  • Preiss L, Yildiz Ă–, Hicks DB, Krulwich TA, Meier T (2010) A new type of proton coordination in an F1Fo-ATP synthase rotor ring. PLoS Biol 8(8):443

    Article  Google Scholar 

  • Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz Ă–, Krulwich TA, Meier T (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci U S A 110:7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss L, Langer JD, Yildiz Ă–, Eckhardt-Strelau L, Guillemont JEG, Koul A, Meier T (2015) Structure of the mycobacterial ATP synthase F0 rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1(4):e1500106. https://doi.org/10.1126/sciadv.1500106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quarato G, Piccoli C, Scrima R, Capitanio N (2011) Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. BBA-Bioenergetics 1807(9):1114–1124. https://doi.org/10.1016/j.bbabio.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  • Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286(36):31361–31372. https://doi.org/10.1074/jbc.M111.267898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rak M, Gokova S, Tzagoloff A (2011) Modular assembly of yeast mitochondrial ATP synthase. EMBO J 30:920–930. https://doi.org/10.1038/emboj.2010.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rak M, Benit P, Chretien D, Bouchereau J, Schiff M, El-Khoury R, Tzagoloff A, Rustin P (2016) Mitochondrial cytochrome c oxidase deficiency. Clin Sci 130(6):393–407. https://doi.org/10.1042/Cs20150707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Aguilar SJ, Keuthe M, Rocha M, Fedyaev VV, Kramp K, Gupta KJ, Rasmusson AG, Schulze WX, van Dongen JT (2011) The composition of plant mitochondrial supercomplexes changes with oxygen availability. J Biol Chem 286(50):43045–43053. https://doi.org/10.1074/jbc.M111.252544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T (2001) Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 40(20):6124–6131

    Article  CAS  PubMed  Google Scholar 

  • Rees DM, Leslie AGW, Walker JE (2009) The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 106(51):21597–21601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requejo R, Hurd TR, Costa NJ, Murphy MP (2010) Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 277(6):1465–1480. https://doi.org/10.1111/j.1742-4658.2010.07576.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR, Marechal A (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 10(86). https://doi.org/10.1098/rsif.2013.0183

  • Roberts PG, Hirst J (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter. J Biol Chem 287(41):34743–34751. https://doi.org/10.1074/jbc.M112.384560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodenburg RJ (2016) Mitochondrial complex I-linked disease. Biochim Biophys Acta 1857(7):938–945. https://doi.org/10.1016/j.bbabio.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  • Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (2010) Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. Proc Natl Acad Sci U S A 107(5):1930–1935. https://doi.org/10.1073/pnas.0908050107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottenberg H, Covian R, Trumpower BL (2009) Membrane potential greatly enhances superoxide generation by the cytochrome bc complex reconstituted into phospholipid vesicles. J Biol Chem 284(29):19203–19210. https://doi.org/10.1074/jbc.M109.017376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22(23):6182–6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runswick MJ, Fearnley IM, Skehel JM, Walker JE (1991) Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett 286(1–2):121–124

    Article  CAS  PubMed  Google Scholar 

  • Salje J, Ludwig B, Richter OMH (2005) Is a third proton-conducting pathway operative in bacterial cytochrome c oxidase? Biochem Soc Trans 33:829–831

    Article  CAS  PubMed  Google Scholar 

  • Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A (2010) Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc 1: implications for the mechanism of superoxide production. BBA-Bioenergetics 1797(11):1820–1827. https://doi.org/10.1016/j.bbabio.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375

    Article  PubMed  CAS  Google Scholar 

  • Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 44(46):12579–12585

    Article  CAS  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chain of yeast and mammalian mitochondria. EMBO J 19(8):1777–1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  Google Scholar 

  • Schägger H, Link TA, Engel WD, Von Jagow G (1986) Isolation of the eleven protein subunits of the bc complex from beef heart. Methods Enzymol 126:224–237

    Article  PubMed  Google Scholar 

  • Schlerf A, Droste M, Winter M, Kadenbach B (1988) Characterization of 2 different genes (CDNA) for cytochrome c oxidase subunit Vla from heart and liver of the rat. EMBO J 7(8):2387–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönfeld P, WiÄ™ckowski MR, LebiedziĹ„ska M, Wojtczak L (2010) Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(6):929–938

    Article  CAS  Google Scholar 

  • Schwem BE, Fillingame RH (2006) Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. J Biol Chem 281:37861–37867

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, MĂĽller DJ (2000) Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Dani DN, Dante S, HauĂź T, Krause F, Schäfer E, Frenzel M, Poetsch A, Rexroth S, SchwaĂźmann HJ, Suhai T, Vonck J, Dencher NA (2009) From protons to OXPHOS supercomplexes and Alzheimer’s disease: structure–dynamics–function relationships of energy-transducing membranes. Biochim Biophys Acta – Bioenergetics 1787:657–671

    Article  CAS  Google Scholar 

  • Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Wikström M (2016) The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. BBA-Bioenergetics 1857(8):1111–1115. https://doi.org/10.1016/j.bbabio.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Belevich G, Gamiz-Hernandez AP, RĂłg T, Vattulainen I, Verkhovskaya ML, Wikström M, Hummer G, Kaila VRI (2015) Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci U S A 112(37):11571–11576. https://doi.org/10.1073/pnas.1503761112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokata K, Katayama Y, Murayama H, Suematsu M, Tsukihara T, Muramoto K, Aoyama H, Yoshikawa S, Shimada H (2007) The proton pumping pathway of bovine heart cytochrome c oxidase. Proc Natl Acad Sci U S A 104(10):4200–4205. https://doi.org/10.1073/pnas.0611627104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silman HI, Rieske JS, Lipton SH, Baum H (1967) A new protein component of complex 3 of mitochondrial electron transfer chain. J Biol Chem 242(21):4867–4875

    CAS  PubMed  Google Scholar 

  • Skippington E, Barkman TJ, Rice DW, Palmer JD (2015) Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A 112(27):E3515–E3524. https://doi.org/10.1073/pnas.1504491112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soberanes S, Urich D, Baker CM, Burgess Z, Chiarella SE, Bell EL, Ghio AJ, De Vizcaya-Ruiz A, Liu J, Ridge KM, Kamp DW, Chandel NS, Schumacker PT, Mutlu GM, Budinger GRS (2009) Mitochondrial ccomplex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem 284(4):2176–2186. https://doi.org/10.1074/jbc.M808844200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubannier V, Vaillier J, Paumard P, Coulary B, Schaeffer J, Velours J (2002) In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 277:10739–10745

    Article  CAS  PubMed  Google Scholar 

  • Sousa JS, Mills DJ, Vonck J, KĂĽhlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. eLife 5:e21290. https://doi.org/10.7554/eLife.21290

    Article  PubMed  PubMed Central  Google Scholar 

  • Spero MA, Aylward FO, Currie CR, Donohue TJ (2015) Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria. mBio 6(2):e00389–e00315. https://doi.org/10.1128/mBio.00389-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahlberg H, MĂĽller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2(3):229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steimle S, Schnick C, Burger EM, Nuber F, Kramer D, Dawitz H, Brander S, Matlosz B, Schafer J, Maurer K, Glessner U, Friedrich T (2015) Cysteine scanning reveals minor local rearrangements of the horizontal helix of respiratory complex I. Mol Microbiol 98(1):151–161. https://doi.org/10.1111/mmi.13112

    Article  CAS  PubMed  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Stoeckenius W (1963) Some observations of negatively stained mitochondria. J Cell Biol 17:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Strauss M, Hofhaus G, Schröder RR, KĂĽhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121(7):1043–1057. https://doi.org/10.1016/j.cell.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk R, Wanschers BF, Nabuurs SB, Nouws J, Nijtmans LG, Huynen MA (2011) NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 585(5):737–743. https://doi.org/10.1016/j.febslet.2011.01.046

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Bron P, Weimann T, Dautant A, Giraud M-F, Paumard P, Salin B, Cavalier A, Velours J, Brèthes D (2008) Supramolecular organization of the yeast F1Fo-ATP synthase. Biol Cell 100(10):591–601

    Article  CAS  PubMed  Google Scholar 

  • Tormos KV, Anso E, Hamanaka RB, Eisenhart J, Joseph J, Kalyanaraman B, Chandel NS (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14(4):537–544. https://doi.org/10.1016/j.cmet.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration – the enzymology of coupling electron-transfer reactions to transmembrane proton translocation. Ann Rev Biochem 63:675–716. https://doi.org/10.1146/annurev.biochem.63.1.675

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Ă…. Science 269(5227):1069–1074. https://doi.org/10.1126/science.7652554

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Ă…. Science 272:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A 100:15304–15309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. https://doi.org/10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzagoloff A, Barrientos A, Neupert W (2004) Atp10p assists assembly of Atp6p into the F0 unit of the yeast mitochondrial ATPase. J Biol Chem 279:19775–19780

    Article  CAS  PubMed  Google Scholar 

  • van Hellemond JJ, van der Klei A, van Weelden SW, Tielens AG (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond Ser B Biol Sci 358(1429):205–213. https://doi.org/10.1098/rstb.2002.1182

    Article  CAS  Google Scholar 

  • van Lis R, Atteia A, Mendoza-Hernandez G, Gonzalez-Halphen D (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol 132:318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Lis R, Mendoza-Hernández G, Groth G, Atteia A (2007) New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol 144:1190–1199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varanasi L, Hosler JP (2012) Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. Biochim Biophys Acta 1817(4):545–551. https://doi.org/10.1016/j.bbabio.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Vempati UD, Han XL, Moraes CT (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 284(7):4383–4391. https://doi.org/10.1074/jbc.M805972200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikström M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A 105(10):3763–3767. https://doi.org/10.1073/pnas.0711249105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videira A (1998) Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1364(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Vik SB, Antonio BJ (1994) Mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269:30364–30369

    CAS  PubMed  Google Scholar 

  • Vik SB, Dao NN (1992) Prediction of transmembrane topology of F0 proteins from Escherichia coli F1F0 ATP synthase using variational and hydrophobic membrane analyses. Biochim Biophys Acta 1140:199–207

    Article  CAS  PubMed  Google Scholar 

  • Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515(7525):80–84. https://doi.org/10.1038/nature13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinothkumar KR, Montgomery MG, Liu S, Walker JE (2016) Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy. Proc Natl Acad Sci U S A 113:12709–12714. https://doi.org/10.1073/pnas.1615902113

    Article  CAS  PubMed Central  Google Scholar 

  • Vonck J, Schäfer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Vonck J, Krug von Nidda T, Meier T, Matthey U, Mills DJ, KĂĽhlbrandt W, Dimroth P (2002) Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J Mol Biol 321(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Vonck J, Pisa KY, Morgner N, Brutschy B, MĂĽller V (2009) Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 284(15):10110–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15(3):336–347

    Article  CAS  PubMed  Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16. https://doi.org/10.1042/BST20110773

    Article  CAS  PubMed  Google Scholar 

  • Walker WH, Singer TP (1970) Identification of the covalently bound flavin of succinate dehydrogenase as 8α-(histidyl) flavin adenine dinucleotide. J Biol Chem 245:4224–4225

    CAS  PubMed  Google Scholar 

  • Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  PubMed  Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233(1):109–122. https://doi.org/10.1006/jmbi.1993.1488

    Article  CAS  PubMed  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116. https://doi.org/10.1038/NMICROBIOL.2016.116

    Article  CAS  PubMed  Google Scholar 

  • Whelan SP, Zuckerbraun BS (2013) Mitochondrial signaling: forwards, backwards, and in between. Oxid Med Cell Longev. https://doi.org/10.1155/2013/351613

  • Wikström MK (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266(5599):271–273

    Article  PubMed  Google Scholar 

  • Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G (2015) New perspectives on proton pumping in cellular respiration. Chem Rev 115(5):2196–2221. https://doi.org/10.1021/cr500448t

    Article  PubMed  CAS  Google Scholar 

  • Wilkens S, Capaldi RA (1998) ATP synthase’s second stalk comes into focus. Nature 393:29

    Article  CAS  PubMed  Google Scholar 

  • Wirth C, Brandt U, Hunte C, Zickermann V (2016) Structure and function of mitochondrial complex I. Biochim Biophys Acta 1857(7):902–914. https://doi.org/10.1016/j.bbabio.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Yu C-A, Kim H, Xia J, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc complex from bovine heart mitochondria. Science 281:64–71

    Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42(8):2266–2274. https://doi.org/10.1021/bi027158b

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev G, Reda T, Hirst J (2007) Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase. Proc Natl Acad Sci U S A 104(31):12720–12725. https://doi.org/10.1073/pnas.0705593104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Trumpower BL (1986) Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. J Biol Chem 261(26):12282–12289

    CAS  PubMed  Google Scholar 

  • Yang M, Trumpower BL (1994) Deletion of QCR6, the gene encoding subunit six of the mitochondrial cytochrome bc complex, blocks maturation of cytochrome c, and causes temperature-sensitive petite growth in Saccharomyces Cerevisiae. J Biol Chem 269(2):1270–1275

    CAS  PubMed  Google Scholar 

  • Yang W-L, Iacono L, Tang W-M, Chin K-V (1998) Novel function of the regulatory subunit of protein kinase A: regulation of cytochrome c oxidase activity and cytochrome c release. Biochemistry 37(40):14175–14180. https://doi.org/10.1021/bi981402a

    Article  CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, LĂ©ger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  CAS  PubMed  Google Scholar 

  • Yong R, Searcy DG (2001) Sulfide oxidation coupled to ATP synthesis in chicken liver mitochondria. Comp Biochem Physiol B Biochem Mol Biol 129(1):129–137

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa S, Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115(4):1936–1989. https://doi.org/10.1021/cr500266a

    Article  CAS  PubMed  Google Scholar 

  • Zara V, Conte L, Trumpower BL (2009) Evidence that the assembly of the yeast cytochrome bc complex involves the formation of a large core structure in the inner mitochondrial membrane. FEBS J 276(7):1900–1914. https://doi.org/10.1111/j.1742-4658.2009.06916.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Neupert W, Tzagoloff A (2007) The metallopeptidase encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol Biol Cell 18:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Barros MH, Shulman T, Tzagoloff A (2008) ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase. Mol Biol Cell 19:1366–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Allegretti M, Vonck J, Langer JD, Marcia M, Peng G, Michel H (2014) Production of a fully assembled and active form of Aquifex aeolicus F1FO ATP synthase in Escherichia coli. BBA – Gen Subj 1840(1):34–40. https://doi.org/10.1016/j.bbagen.2013.08.023

    Article  CAS  Google Scholar 

  • Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 3:e10180. https://doi.org/10.7554/eLife.10180

    Google Scholar 

  • Zhu J, Vinothkumar KR, Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536(7616):354–358. https://doi.org/10.1038/nature19095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347:44–49. https://doi.org/10.1126/science.1259859

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Vonck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sousa, J.S., D’Imprima, E., Vonck, J. (2018). Mitochondrial Respiratory Chain Complexes. In: Harris, J., Boekema, E. (eds) Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-7757-9_7

Download citation

Publish with us

Policies and ethics