Skip to main content
Log in

Characterization of the dopamine stimulated adenylate cyclase in the pedal ganglia ofMytilus edulis: Interactions with etorphine,β-endorphin, DALA, and methionine enkephalin

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The dopamine-stimulated adenylate cyclase activity was studied both in vivo and in vitro in the central nervous system of the bivalve mollusc Mytilus edulis. Dopamine, epinine, and apormorphine stimulated the enzyme system. Fluphenazine, haloperidol, chlorpromaxine, and to a lesser extent BOL inhibited the dopamine-stimulated adenylate cyclase. Etorphine, β-endorphine, DALA, and methionine enkephalin depressed cyclic AMP levels. This phenomena was naloxone reversible. In addition, the opioids inhibited the stimulation of adenylate cyclase by dopamine. This phenomena was also naloxone reversible. The study demonstrates an interaction among dopamine, the opioids, and cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ary, M., Cox, B. and Lomax, P., (1977). Dopaminergic mechanism in percipitated withdrawal in morphine-dependent rats.J. Pharmacol. Exp. Ther. 200271–276.

    Google Scholar 

  • Berry, M. S., and Cottrell, G. A. (1973). Dopamine: excitatory and inhibitory transmission from a giant dopamine neurone.Nature New Biol. 242250–253.

    Google Scholar 

  • Carenzi, A., Guidotti, A., Revvelta, A., and Costa, E. (1975). Molecular mechanisms in the actions of morphine and viminol (R2) on rat striatum.J. Pharmacol. Exp. Ther. 194311–318.

    Google Scholar 

  • Catapane, E. J., Stefano, G. B., and Aiello, E. (1978). Pharmacological study of the reciprocal dual innervation of the lateral ciliated gill epithelium by the CNS ofMytilus edulis (Bivalvia).J. Exp. Bio. 74101–113.

    Google Scholar 

  • Catapane, E. J., Stefano, G. B., and Aiello, E. (1979). Neurophysiological correlates of the dopaminergic cilio-inhibitory mechanism ofMytilus edulis.J. Exp. Biol. 83315–323.

    Google Scholar 

  • Cedar, H., Kandel, E. R., and Schwartz, J. H. (1972). Cyclic adenosine monophosphate in the nervous system ofAplysia californica. Increased synthesis in response to synaptic stimulation.J. Gen. Physiol. 60558–569.

    Google Scholar 

  • Clouet, D. H., and Iwatsubo, K. (1975). Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine.Life Sci. 1735–40.

    Google Scholar 

  • Dahl, E., Flack, B., Von Mecklenburg, C., Myhrberg, H., and Rosengren, E. (1966). Neuronal localization of dopamine and 5-hydroxytryptamine in some molluscs.Z. Zellforsch. Mikrosk. Anat.,71489–498.

    Google Scholar 

  • Eidelberg, E., and Erpramer, J. (1975). Dopaminergic mechanisms of opiate actions in the brain.J. Pharmacol. Exp. Ther. 19250–57.

    Google Scholar 

  • Forn, J., Krueger, B. K., and Greengard, P. (1974). Adenosine 3′, 5′ monophosphate content in rat caudate nucleus: demonstration of dopaminergic and adrenergic receptors.Science 1861118–1120.

    Google Scholar 

  • Iwatsubo, K., and Clouet, D. H. (1975). Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol.Biochem. Pharmacol. 141499–1503.

    Google Scholar 

  • Kebabian, J. W., and Calne, D. B. (1979). Multiple receptors for dopamine.Nature 27793–96.

    Google Scholar 

  • Kebabian, J. W., and Greengard, P. (1971). Dopamine sensitive adenyl cyclase: possible role in synaptic transmission.Science 1741346–1349.

    Google Scholar 

  • Kebabian, J. W., and Saavedra, J. M. (1976). Dopamine sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dentrites.Science 193683–685.

    Google Scholar 

  • Kream, R. M., Zukin, R. S., and Stefano, G. B. (1980). Demonstration of two classes of opiate binding sites in the nervous tissue of the marine molluscMytilus edulis: positive homotropic cooperativity of lower affinity binding sites.J. Biol. Chem 2559218–9224.

    Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. (1976). Multiple opiate receptors. In Ksoterlitz, H. W. (ed.),Opiates and Endogenous Opioid Peptides, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 275–280.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., (1951). Protein measurement with the Folin phenol regent.J Biol. Chem. 193265–275.

    Google Scholar 

  • Malanga, C. J., Wenger, G. R., and Aiello, E. (1972). Endogenous dopamine in bivalve gills.Comp. Biochem. Physiol. 43A825–830.

    Google Scholar 

  • Malanga, C. J., Poll, K. A., and O'Donnell, J. P. (1980). Agonist and antagonist effects of dopaminergic stimulation of C'AMP in the ciliated cell eipthelium of the marine musselMytilus edulis. Fed. Proc. 39(3):Abstr. 3179.

    Google Scholar 

  • Miller, R. J., Horn, A. S., and Iversen, L. L. 1974. The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′, 5′-monophosphate production in rat neostriatum and limbic forebrain.Mol. Pharmacol. 10759–766.

    Google Scholar 

  • Osborne, N. N., Hiripi, L., and Neuhoff, V. (1975). Thein vitro uptake of biogenic amines by snail (Helix pomatia) nervous tissue.Biochem. Pharmacol. 242141–2148.

    Google Scholar 

  • Osborne, N. N. (1977). Adenosine 3′,5′-monophosphate in snail (Helix pomatia) nervous system: analysis of dopamine receptors.Experientia 33917–918.

    Google Scholar 

  • Pert, C. B., and Taylor, D. B. (1979). Type 1 and Type 2 subclass: scheme based on GTP's differential effect on binding. In Way, E. L. (ed.),Endogenous and Exogenous Opiate Agonists and Antagonists, Pergamon, Elmsford, N.Y., pp. 87–90.

    Google Scholar 

  • Puri, S. K., O'Brian, J., and Lal, H. (1971). Potentiation of morphine-withdrawal aggression by D-anphetamine, DOPA, or apormorphine,Pharmacologist 13280.

    Google Scholar 

  • Puri, S. K., Cochin, J., and Volicer, L. (1975). Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activity in rat corpus striatum.Life Sci 16759–767.

    Google Scholar 

  • Saamivaara, L. (1976). Analgesic activity of some sympathetic drugs and their effect on morphine analygesia in rabbits,Ann. Med. Exp. Biol. Fenn. 47180–190.

    Google Scholar 

  • Simantov, R., and Snyder, S. H. (1976). Brain-pituitary opiate mechanisms, pituitary opiate receptor binding, radioimmunoassays for methionine enkephalin and leucine enekphalin and3H enkephalin interactions with the opiate receptor. In H. W. Kosterlitz (ed.),Opiates and Endogenous Opioids Peptides, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 41–48.

    Google Scholar 

  • Stefano, G. B., and Catapane, E. J., (1977a). The effects of temperature acclimation on monoamine metabolism.J. Pharmacol. Exp. Ther. 203449–456.

    Google Scholar 

  • Stefano, G. B., and Catapane, E. J. (1977b). Seasonal monoamine changes in the central nervous system ofMytilus edulis (Bivalvia).Experientia 331341–1342.

    Google Scholar 

  • Stefano, G. B., and Catapane, E. J. (1979). Enkephalins increase dopamine levels in the CNS of a marine mollusc.Life Sci. 241617–1622.

    Google Scholar 

  • Stefano, G. B., and Hiripi, L. (1979). Methionine enkephalin and morphine alter monoamine and cyclic neucleotide levels in the cerebral ganglia of the freshwater bivalveAnodonta cygnea.Life Sci. 25291–298.

    Google Scholar 

  • Stefano, G. B., Kream, R. M., and Zukin, R. S. (1980). Demonstration of stereospecific opiate binding in the nervous tissue of the marine molluscMytilus edulis.Brain Res. 181440–445.

    Google Scholar 

  • Sweeney, D. (1963). Dopamine: its occurrence in molluscan ganglia.Science 1391051.

    Google Scholar 

  • Treistan, S. N., and Levitan, I. B. (1976). Alteration of electrical activity in molluscan neurons by cyclic nucleotide and peptide factors.Nature 26162.

    Google Scholar 

  • Von Euler, V. S. (1961). Occurrence of catecholamines in Acrania and invertebrates.Nature 190170–171.

    Google Scholar 

  • Walczak, S. A., Wilkening, D., and Makman, M. H. (1979). Interaction of morphine, etorphine and enkephalins with dopamine-stimulated adenylate cyclase of monkey amygdala.Brain Res. 160105–116.

    Google Scholar 

  • Welsh, J. H. (1972). Catecholamines in the invertebrates. InHandbook of Experimental Pharmacology, Vol. 33, pp. 79–109. Pergamon, New York.

    Google Scholar 

  • Wilkening, D., Mishra, R. K., and Makman, M. H. (1976). Effects of morphine on dopamine-stimulated adenylate cyclase and on cyclic GMP formation in primate brain amygdaloid nucleus.Life Sci.,191129–1138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by Grant 1-T32GM07641-01 from the M.A.R.C. Program of N.I.G.M.S. and Grant 1S06RR08171-01 by the Division of Research Resources and the N.I.M.H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefano, G.B., Catapane, E.J. & Kream, R.M. Characterization of the dopamine stimulated adenylate cyclase in the pedal ganglia ofMytilus edulis: Interactions with etorphine,β-endorphin, DALA, and methionine enkephalin. Cell Mol Neurobiol 1, 57–68 (1981). https://doi.org/10.1007/BF00736039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736039

Key words

Navigation