Skip to main content
Log in

Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

An immunocytochemical technique has been used to study for the first time the distribution of fibers and cell bodies containing leucine–enkephalin (leu-enk), methionine–enkephalin (met-enk) or adrenocorticotropic hormone (ACTH) in the whole brainstem of the squirrel monkey Saimiri sciureus. Cell bodies containing leu-enk or met-enk were found in the superior colliculus and the formatio reticularis tegmenti mesencephali, respectively. No immunoreactive cell bodies containing ACTH were observed. Leu-enk-immunoreactive fibers were observed in 40 brainstem nuclei/tracts/regions, fibers containing met-enk were found in 38 brainstem nuclei/tracts/regions and fibers containing ACTH were found in 26 nuclei/tracts/regions. In the latter case, the density of immunoreactive fibers was always low. A high/moderate density of leu-enk- or met-enk-immunoreactive fibers were found in 18 and 16 brainstem nuclei/tracts/regions, respectively. The distribution of immunoreactive fibers containing leu-enk or met-enk was quite similar, with both leu-enk and met-enk observed in 82.5 % of the squirrel monkey brainstem nuclei/tracts/regions. This relationship is less marked for met-enk and ACTH (60.5 %) and even lower for leu-enk and ACTH (52.5 %). In 42.5 % of the nuclei/tracts/regions of the squirrel monkey brainstem (colliculus superior, substantia grisea centralis, nucleus interpeduncularis, nucleus tractus spinalis nervi trigemini, nucleus tractus solitarii, nucleus parabrachialis, formatio reticularis, substantia nigra), we observed fibers containing all three neuropeptides. The widespread distribution reported here suggests that enkephalins and ACTH can be involved in several physiological functions. The distribution of the immunoreactive fibers reported here is quite similar to that previously reported for enkephalins and ACTH in Macaca species and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ann:

Nucleus annularis

AS:

Aqueductus Sylvii

BC:

Brachium conjunctivum

BP:

Brachium pontis

Cd:

Nucleus caudatus

CD:

Nucleus cochlearis dorsalis

Cn:

Nucleus cuneatus

CnL:

Nucleus cuneatus lateralis

CM:

Centrum medianum thalami

CM-pf:

Centrum medianum–parafascicularis complex

CoS:

Colliculus superior

CT:

Corpus trapezoideum

CV:

Nucleus cochlearis ventralis

DBC:

Decussatio brachii conjunctivi

DG:

Nucleus dorsalis tegmenti (Gudden)

DPy:

Decussatio pyramidum

DR:

Nucleus dorsalis raphae

DV:

Nucleus dorsalis nervi vagi

FC:

Funiculus gracilis

FRM:

Formatio reticularis myelencephali

FRPo:

Formatio reticularis pontis oralis

FRTM:

Formatio reticularis tegmenti mesencephali

G:

Nucleus gracilis

GC:

Substantia grisea centralis

GCv:

Substantia grisea centralis, pars ventralis

GM:

Corpus geniculatum medialis

GPo:

Griseum pontis

IP:

Nucleus interpeduncularis

LC:

Locus coeruleus

LM:

Nucleus lemnisci lateralis

LP:

Nucleus lateralis posterior thalami

MD:

Nucleus medialis dorsalis thalami

NCI:

Nucleus colliculi inferioris

NCS:

Nucleus centralis superior tegmenti

NIII:

Nucleus nervi oculomotorii

nIV:

Nervus trochlearis

NIV:

Nucleus nervi trochlearis

NR:

Nucleus ruber

NSv:

Nucleus tractus spinalis nervi trigemini

NTS:

Nucleus tractus solitarii

nV:

Nervus trigemini

NVI:

Nucleus nervi abducentis

NVII:

Nucleus nervi facialis

nVIII:

Nervus vestibularis

nVIIIa:

Nervus acusticus

NXII:

Nucleus nervi hypoglossi

OI:

Nucleus olivaris inferior

OIm:

Nucleus olivaris inferior, accessorius medialis

OIp:

Nucleus olivaris inferior principalis

OS:

Nucleus olivaris superior

P:

Nucleus posterior thalami

PbL:

Nucleus parabrachialis lateralis

PbM:

Nucleus parabrachialis medialis

pf:

Nucleus parafascicularis thalami

Pp:

Nucleus praepositus

PTc:

Nucleus praetectalis

PuO:

Nucleus peripeduncularis oralis thalami

Pv:

Nucleus principalis nervi trigemini

Py:

Tractus pyramidalis

RL:

Nucleus reticularis lateralis myelencephali

RPm:

Nucleus reticularis paramedianus myelencephali

RTP:

Nucleus reticularis tegmenti pontis

SNc:

Substantia nigra, pars compacta

SNd:

Substantia nigra, pars diffusa

TSc:

Tractus tectospinalis nervi trigemini

TTS:

Tractus tectospinalis

VesI:

Nucleus vestibularis inferior

VesL:

Nucleus vestibularis lateralis

VesM:

Nucleus vestibularis medialis

VesS:

Nucleus vestibularis superior

References

  • Abrams GM, Nilaver G, Hoffman D, Zimmerman EA, Ferin M, Krieger DT et al (1980) Immunocytochemical distribution of corticotropin (ACTH) in monkey brain. Neurology 30:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson U, Cullheim S, Ulfhake B, Ramírez V, Dagerlind A, Luppi PH et al (1992) Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse 11:85–104

    Article  CAS  PubMed  Google Scholar 

  • Bouras C, Taban CH, Constantinidis J (1984) Mapping of enkephalins in the human brain. An immunohistofluorescence study on brains from patients with senile and presenile dementia. Neuroscience 12:179–190

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu JY (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280

    Article  CAS  PubMed  Google Scholar 

  • Cheng-Shu L, Davis BJ, Smith DV (2003) Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res 965:21–34

    Article  Google Scholar 

  • Coveñas R, de León M, Narváez JA, Tramu G, Aguirre JA, González-Barón S (1996) An immunocytochemical mapping of ACTH/CLIP in the cat diencephalon. J Chem Neuroanat 11:191–197

    Article  PubMed  Google Scholar 

  • Coveñas R, de León M, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1997) ACTH/CLIP immunoreactivity in the cat brain stem. Peptides 18:965–970

    Article  PubMed  Google Scholar 

  • Coveñas R, Mangas A, Narváez JA (2007) Introduction to neuropeptides. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 1–26

    Google Scholar 

  • Coveñas R, Duque E, Mangas A, Marcos P, Narváez JA (2008) Neuropeptides in the monkey (Macaca fascicularis) brainstem. In: Mangas A, Coveñas R, Geffard M (eds) Brain molecules: from vitamins to molecules for axonal guidance. Transworld Research Network, Trivandrum, pp 131–156

    Google Scholar 

  • Coveñas R, Mangas A, Bodet D, Duleu S, Marcos P, Karakas B et al (2011) Frontiers in vitamin research: new antibodies, new data. Sci World J 11:1226–1242

    Article  Google Scholar 

  • de Souza E, Yi P, Aguilar LA, Coveñas R, Lerma L, Andrade R et al (2007) Mapping of leucine–enkephalin in the alpaca (Lama pacos) brainstem. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 103–114

    Google Scholar 

  • del Pozo E, Martín-Pérez J, Stadelmann A, Girard J, Brownell J (1980) Inhibiting action of met-enkephalin on ACTH release in man. J Clin Investig 65:1531–1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Duque E, Mangas A, Díaz-Cabiale Z, Narváez JA, Coveñas R (2011) Neuropeptides in the monkey brainstem. In: Williams RM (ed) Monkeys: biology, behavior and disorders. Nova Science Publishers, New York, pp 151–166

    Google Scholar 

  • Edwards DL, Poletti CE, Foote WE (1987) Evidence for leucine–enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey. Brain Res 437:197–203

    Article  CAS  PubMed  Google Scholar 

  • Emmers R, Aker K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). The University of Wisconsin Press, Madison

    Google Scholar 

  • Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A et al (1983) Tyrosine hydroxylase and methionine–enkephalin in the human mesencephalon. J Neurol Sci 58:247–267

    Article  CAS  PubMed  Google Scholar 

  • Guntern R, Vellet PG, Bouras C, Constantinidis J (1989) An improved inmunohistostaining procedure for peptides in human brain. Experientia 45:159–161

    Article  CAS  PubMed  Google Scholar 

  • Haber S, Elde R (1982a) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7:1049–1095

    Article  CAS  PubMed  Google Scholar 

  • Haber S, Elde R (1982b) The distribution of enkephalin immunoreactive neural cell bodies in the monkey brain: preliminary observations. Neurosci Lett 32:247–252

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Watson SJ (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024

    Article  CAS  PubMed  Google Scholar 

  • Ibuki T, Okamura H, Miyazaki M, Yanaihara N, Zimmerman EA, Ibata Y (1989) Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata). J Comp Neurol 279:445–456

    Article  CAS  PubMed  Google Scholar 

  • Inagaki S, Parent A (1984) Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey. Brain Res Bull 13:319–329

    Article  CAS  PubMed  Google Scholar 

  • Inagaki S, Parent A (1985) Distribution of enkephalin-immunoreactive neurons in the forebrain and the upper brainstem of the squirrel monkey. Brain Res 359:267–280

    Article  CAS  PubMed  Google Scholar 

  • Khachaturian H, Lewis ME, Haber SN, Akil H, Watson SJ (1984) Pro-opiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Res Bull 13:785–800

    Article  CAS  PubMed  Google Scholar 

  • Kubek MJ, Wilber JF (1980) Regional distribution of leucine–enkephalin in hypothalamic and extrahypothalamic loci of the human nervous system. Neurosci Lett 18:155–161

    Article  CAS  PubMed  Google Scholar 

  • Lewis ME, Khachaturian H, Watson SJ (1983) Comparative distribution of opiate receptors and three opioid peptide neuronal systems in Rhesus monkey central nervous system. Life Sci 33:239–242

    Article  CAS  PubMed  Google Scholar 

  • Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R et al (2006) Riboflavin-like immunoreactive fibers in the monkey brain. Anat Embryol 211:267–272

    Article  CAS  PubMed  Google Scholar 

  • Manso B, Sánchez ML, Medina LE, Aguilar LA, Díaz-Cabiale Z, Narváez JA et al (2014) Immunohistochemical mapping of pro-opiomelanocortin- and pro-dynorphin-derived peptides in the alpaca (Lama pacos) diencephalon. J Chem Neuroanat 59:36–50

    Article  PubMed  Google Scholar 

  • Marcos P, Coveñas R, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1999) Immunohistochemical mapping of enkephalins, NPY, CGRP and GRP in the cat amygdale. Peptides 20:635–644

    Article  CAS  PubMed  Google Scholar 

  • Neil A, Terenius L, Ternes JW, Ehrman RN, O’Brien CP (1986) Opiate receptors, neuropeptides in CNS and CSF of two Macaca species with different responsiveness to opiates. Eur J Pharmacol 122:143–147

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M (1988) Neuropeptides in the brain. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven Press, New York, pp 1–44

    Google Scholar 

  • Palkovits M, Fodor M (1995) Distribution of neuropeptides in the human lower brainstem (pons and medulla oblongata). In: Tracy DJ, Paxinos G, Stone J (eds) Neurotransmitters in the human brain. Plenum Press, New York, pp 101–113

    Chapter  Google Scholar 

  • Pego-Reigosa R, Coveñas R, Tramu G, Pesini P (2000) Distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 19:243–258

    Article  CAS  PubMed  Google Scholar 

  • Pesini P, Pego-Reigosa R, Tramu G, Coveñas R (2004) Distribution of ACTH immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 27:275–282

    Article  CAS  PubMed  Google Scholar 

  • Pioro EP, Mai JK, Cuello AC (1990) Distribution of substance P- and enkephalin-immunoreactive neurons and fibers. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 1051–1094

    Chapter  Google Scholar 

  • Ploska A, Taquet H, Javoy-Agid F, Gaspar P, Cesselin F, Berger B et al (1982) Dopamine and methionine–enkephalin in human brain. Neurosci Lett 33:191–196

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Medina L, Haber SN (1999) The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 88:775–793

    Article  CAS  PubMed  Google Scholar 

  • Sánchez ML, Vecino E, Coveñas R (2013) Distribution of methionine–enkephalin in the minipig brainstem. J Chem Neuroanat 50–51:1–10

    Article  PubMed  Google Scholar 

  • Sánchez ML, Vecino E, Coveñas R (2015) Distribution of neurotensin and somatostatin-28 (1-12) in the minipig brainstem. Anat Histol Embryol. doi:10.1111/ahe.12194

    PubMed  Google Scholar 

  • Zaphiropoulos A, Charnay Y, Vallet P, Constantinidis J, Bouras C (1991) Immunohistochemical distribution of corticotrophin-like intermediate lobe peptide (CLIP) immunoreactivity in the human brain. Brain Res Bull 26:99–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Educación y Ciencia (BFU2005-02241/BFI), Spain, by the Ministerio de Ciencia e Innovación (BFU2008-03369/BFI), Spain and by the Universidad de Santander UDES (CI/PICF0-114020041814EJ), Bucaramanga, Colombia. The authors wish to thank Professor Gérard Tramu (Université de Bordeaux I, France) for the gift of primary antibodies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewing Duque-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duque-Díaz, E., Díaz-Cabiale, Z., Narváez, J.A. et al. Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem. Anat Sci Int 92, 275–292 (2017). https://doi.org/10.1007/s12565-016-0333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0333-2

Keywords

Navigation