Skip to main content
Log in

Ganglion-Specific Sensitivity of P2X3 Receptors to Leu-Enkephalin

  • Published:
Neurophysiology Aims and scope

In this study, several properties of modulation of P2X3 currents by an endogenous opioid, leu-enkephalin (LEK), in neurons of the dorsal root and nodose ganglia (DRGs and NGs, respectively) were compared. P2X3-mediated currents were recorded using a patch-clamp technique in the whole-cell configuration. P2X3 receptors in DRG neurons were found to be more sensitive to LEK application compared to NG neurons; complete suppression of the corresponding currents required lower concentrations of LEK and rose more quickly. Short-term preapplication of naloxone (a nonselective opioid receptor antagonist) on NG neurons did not alter the effect of the tested opioid on P2X3 currents, while it dramatically enhanced LEK-induced inhibition in DRG neurons. This fact may be indicative of the existence of specific intracellular pathways involved in opioid-induced modulation of P2X3 receptors of different peripheral ganglia in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cockayne, S. G Hamilton, Q. M Zhu, et al., “Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice,” Nature, 407, No. 6807, 1011–1015 (2000).

    Article  CAS  Google Scholar 

  2. R. A. North, “P2X3 receptors and peripheral pain mechanisms,” J. Physiol., 554, Pt. 2, 301–308 (2004).

    Article  CAS  Google Scholar 

  3. G.Y. Xu, M. Shenoy, J.H. Winston, et al., “P2X receptormediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity,” Gut., 57, No. 9, 1230–1237 (2008).

    Article  CAS  Google Scholar 

  4. I. Chizhmakov, Y. Yudin, N. Mamenko, et al., “Opioids inhibit purinergic nociceptors in the sensory neurons and fibres of rat via a G protein-dependent mechanism,” Neuropharmacology, 48, No. 5, 639–647 (2005).

    Article  CAS  Google Scholar 

  5. Z. Gerevich, Z. Zadori, C. Muller, et al., “Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization,” Br. J. Pharmacol., 151, No. 2, 226–236 (2007).

    Article  CAS  Google Scholar 

  6. F. Wan, G. Li, S. Liu, et al., “P2X2/3 receptor activity of rat nodose ganglion neurons contributing to myocardial ischemic nociceptive signaling,” Auton. Neurosci., 158, Nos. 1-2, 58–64 (2010).

    Article  CAS  Google Scholar 

  7. L. Wang, D. Feng, H. Yan, et al., “Comparative analysis of P2X1, P2X2, P2X3, and P2X4 receptor subunits in rat nodose ganglion neurons,” PLoS One, 9, No. 5, 690–699 (2014).

    Google Scholar 

  8. M. C. G. de Oliveira Fusaro, A. Pelegrini-da-Silva, D. Araldi, et al., “P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by pro-inflammatory cytokines, PGE(2) or dopamine,” Eur. J. Pharmacol., 649, Nos. 1-3, 177–182 (2010).

    Article  Google Scholar 

  9. M. V. Mamenko, I. V. Chizhmakov, T.M. Volkova, et al., “Extracellular cAMP inhibits P2X receptors in rat sensory neurones through G protein-mediated mechanism,” Acta Physiol. (Oxf)., 199, No. 2, 199–204 (2010).

    Article  CAS  Google Scholar 

  10. G. Mo, J. C. Peleshok, C. Q. Cao, et al., “Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons,” Mol. Pharmacol., 83, No. 3, 640–647 (2013).

    Article  CAS  Google Scholar 

  11. C. K. Park, J. H. Bae, H. Y. Kim, et al., “Substance P sensitizes P2X3 in nociceptive trigeminal neurons,” J. Dent. Res., 89, No. 10, 1154–1159 (2010).

    Article  CAS  Google Scholar 

  12. G. W. Pasternak and Y. X. Pan, “Mu opioids and their receptors: evolution of a concept,” Pharmacol. Rev., 65, No. 4, 1257–1317 (2013).

    Article  CAS  Google Scholar 

  13. V. B. Kulyk, I. V. Chizhmakov, T. M. Volkova, et al., “Role of phosphoinositide signaling pathway in opioids control of P2X3 receptors in the primary sensory neurons,” Fiziol. Zh., 4, 22–29 (1994).

    Google Scholar 

  14. E. B. Pratt, T. S. Brink, P. Bergson, et al., “Usedependent inhibition of P2X3 receptors by nanomolar agonist,” J. Neurosci., 25, No. 32, 7359–7365 (2005).

    Article  CAS  Google Scholar 

  15. M. Rousset, T. Cens, A. Gouin-Charnet, et al., “Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gbeta gamma-sensitive state of Ca V2 Ca2+ channels,” J. Biol. Chem., 279, No. 15, 14619 – 14630 (2004).

    Article  CAS  Google Scholar 

  16. T. P. Kenakin, “The secret lives of GPCRs,” Drug Discov. Today, 8, 674–685 (2003).

    Article  Google Scholar 

  17. I. Chizhmakov, V. Kulyk, I. Khasabova, “Molecular mechanism for opioid dichotomy: bidirectional effect of mu-opioid receptors on P2X receptor currents in rat sensory neurones,” Purinergic Signal., 11, No. 2, 171–181 (2015).

    Article  CAS  Google Scholar 

  18. S. M. Crain and K. F. Shen, “Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment,” Proc. Natl. Acad. Sci. USA, 92, No. 23, 10540–10544 (1995).

    Article  CAS  Google Scholar 

  19. M. J. Millan, B. J. Morris, and A. Herz, “Antagonistinduced opioid receptor up-regulation. I. Characterization of supersensitivity to selective mu and kappa agonists,” J. Pharmacol. Exp. Ther., 247, No. 2, 721–728 (1988).

    CAS  PubMed  Google Scholar 

  20. X. Pang, M. Yang, and K. Han, “Antagonist binding and induced conformational dynamics of GPCR A2A adenosine receptor,” Proteins, 81, No. 8, 1399–1410 (2013).

    Article  CAS  Google Scholar 

  21. U. E. Petäjä-Repo, M. Hogue, S. Bhalla, et al., “Ligands act as pharmacological chaperones and increase the efficiency of δ opioid receptor maturation,” EMBO J., 21, No. 7, 1628–1637 (2002).

    Article  Google Scholar 

  22. A. Tempel, S. M. Crain, E. R. Peterson, et al., “Antagonist-induced opiate receptor upregulation in cultures of fetal mouse spinal cord-ganglion explants,” Brain Res., 390, No. 2, 287–291 (1986).

    Article  CAS  Google Scholar 

  23. B. C. Yoburn, V. Purohit, K. Patel, and Q. Zhang, “Opioid agonist and antagonist treatment differentially regulates immunoreactive mu-opioid receptors and dynamin-2 in vivo,” Eur. J. Pharmacol., 498, Nos. 1-3, 87–96 (2004).

    Article  CAS  Google Scholar 

  24. J. A. Roberts, C. Vial, H. R. Digby, et al., “Molecular properties of P2X receptors,” Pflugers Arch., 452, No. 5, 486–500 (2006).

    Article  CAS  Google Scholar 

  25. Q. Zhao, D. E. Logothetis, and P. Séguéla, “Regulation of ATP-gated P2X receptors by phosphoinositides,” Pflugers Arch., 455, No. 1, 181–185 (2007).

    Article  CAS  Google Scholar 

  26. A. D. Corbett, G. Henderson, A. T. McKnight, and S. J. Peterson, “75 years of opioid research: the exciting but vain quest for the Holy Grail,” Br. J. Pharmacol., 147, Suppl. 1, 153–162 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kulyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyk, V.B., Chizhmakov, I.V., Iegorova, O.V. et al. Ganglion-Specific Sensitivity of P2X3 Receptors to Leu-Enkephalin. Neurophysiology 52, 186–191 (2020). https://doi.org/10.1007/s11062-020-09869-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09869-y

Keywords

Navigation