Skip to main content
Log in

The blood-brain barrier: Cellular basis

  • Published:
Journal of Inherited Metabolic Disease

Summary

Perfusion experiments with horseradish peroxidase have established that the morphological substrate of the blood-brain barrier is represented by microvascular endothelial cells. They are characterized by complexly arranged tight junctions and a very low rate of transcytotic vesicular transport. They express transport enzymes, carrier systems and brain endothelial cell-specific molecules of unknown function not expressed by any other endothelial cell population. These blood-brain barrier properties are not intrinsic to these cells but are inducible by the surrounding brain tissue. Type I astrocytes injected into the anterior eye chamber of the rat or onto the chick chorioallantoic membrane are able to induce a host-derived angiogenesis and some blood-brain barrier properties in endothelial cells of non-neural origin. Recently we have shown that this cellular interaction is due to the secretion of a soluble astrocyte derived factor(s). Astrocytes are also implicated in the maintenance, functional regulation and the repair of the blood-brain barrier. Complex interactions between other constituents of the microenvironment surrounding the endothelial cells, such as the basement membrane, pericytes, nerve endings, microglial cells and the extracellular fluid, take place and are required for the proper functioning of the blood-brain barrier, which in addition is regionally different as reflected by endothelial cell heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert Z, Orlowski M, Ruzucidlo P, Orlowski J (1966) Studies on gamma-glutamyl-transpeptidase activity and its histochemical localisation in the central nervous system of men and different animal species.Acta Histochem (Suppl.)25: 312–320.

    Google Scholar 

  • Auerbach R, Alby L, Morrissey LW, Tu M, Joseph J (1985) Expression of organ-specific antigens on capillary endothelial cells.Microvasc Res 29: 401–411.

    Google Scholar 

  • Augustin-Voss HG, Johnson RC, Pauli BU (1991) Modulation of endothelial cell surface glycoconjugate expression by organ derived biomatrices.Exp Cell Res 192: 346–351.

    Google Scholar 

  • Bauer HC, Tontsch U, Amberger A, Bauer H (1990) Gamma-glutamyl-transpeptidase and Na+,K+-ATPase activities in different subpopulations of cloned cerebral endothelial cells: responses to glial stimulation.Biochem Biophys Res Commun 168: 358–363.

    Google Scholar 

  • Beck DW, Roberts RL, Olson JJ (1986) Glial cells influence membrane-associated enzyme activity at the blood-brain barrier.Brain Res 43: 131–137.

    Google Scholar 

  • Betz AL, Goldstein GW (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries.Science 202: 225–226.

    Google Scholar 

  • Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells.Brain Res 192: 17–28.

    Google Scholar 

  • Biedl A, Kraus R (1898) Über eine bisher unbekannte toxische Wirkung der Gallensäuren auf das Zentralnervensystem.Zbl Inn Med 19: 1185–1200.

    Google Scholar 

  • Bouldin TW, Krigman MR (1975) Differential premeability of cerebral capillary and choroid plexus to lanthanum ion.Brain Res 99: 444–448.

    Google Scholar 

  • Bradbury MWB (1979)The Concept of a Blood-Brain Barrier. Chichester: Wiley.

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain.J Cell Biol 40: 648–677.

    Google Scholar 

  • Brightman MW, Klatzo I, Olsson Y, Reese TS (1970a) The blood-brain barrier to proteins under normal and pathological conditions.J Neurol Sci 10: 215–239.

    Google Scholar 

  • Brightman MW, Reese TS, Feder N (1970b) Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium in mice and sharks. In Crone C, Lassen NA, eds.Capillary Permeability. New York: Academic Press, 463–476.

    Google Scholar 

  • Brightman MW, Reese TS, Olsson Y, Klatzo I (1971) Morphologic aspects of the blood-brain barrier to peroxidase in elasmobranchs. In Zimmermann HM, ed.Progress in Neuropathology, Vol 1. New York: Grune & Stratton, 146–161.

    Google Scholar 

  • Broman T (1941) The possibilities of the passage of substances from the blood to the central nervous sysstem.Acta Psychiatr 16: 1–25.

    Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anesthetized rats: a developmental study.J Physiol 429: 47–62.

    Google Scholar 

  • Coomber BL, Stewart PA (1985) Morphometric analysis of CNS microvasculature endothelium.Microvasc Res 30: 99–115.

    Google Scholar 

  • Cordon-Cardo C, O'Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at the blood-brain barrier.Proc Natl Acad Sci USA 86: 695–998.

    Google Scholar 

  • Crone C, Oleson SP (1982) Electrical resistance of brain microvasculature endothelium.Brain Res 241: 49–55.

    Google Scholar 

  • Davson H, Matchett PA (1953) The kinetics of penetration of the blood-aqueous barrier.J Physiol 122: 11–32.

    Google Scholar 

  • Davson H, Spaziani E (1959) The blood-brain barrier.J Physiol 149: 135–143.

    Google Scholar 

  • DeBault LE, Cancilla PA (1979) Gamma-glutamyl-transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro.Science 207: 653–655.

    Google Scholar 

  • Dehouk MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass production method to study the blood-brain barrier in vitro.J Neurochem 54: 1789–1801.

    Google Scholar 

  • Dempsey EW, Wislocki GB (1955) An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain.J Biophys Biochem Cytol 1: 245–256.

    Google Scholar 

  • Dermietzel R, Krause D (1991) Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry.Int Rev Physiol 127: 57–109.

    Google Scholar 

  • Dermietzel R, Krause D, Kremer M, Wang G, Stevenson B (1992) Pattern of glucose transporter (glut-1) in embryonic brains is related to maturation of blood-brain barrier tightness.Dev Dyn 193: 152–163.

    Google Scholar 

  • Dick APK, Harik SI, Klip A, Walker DM (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity.Proc Natl Acad Sci USA 81: 7233–7237.

    Google Scholar 

  • Ehrlich P (1902)Über die Beziehung von chemischer Constitution, Vertheilung und pharmakologischer Wirkung. Berlin: Hirschwald.

    Google Scholar 

  • Farrell CL, Yang J, Pardridge WM (1992) Glut-1 transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvascular endothelia with and without tight junctions.J Histochem Cytochem 40: 193–199.

    Google Scholar 

  • Geist MJ, Maris DO, Grady MS (1991) Blood-brain barrier permeability is not altered by allograft or xenograft fetal neural cell suspension grafts.Exp Neurol 111: 166–174.

    Google Scholar 

  • Gerschenfeld HM, Wald F, Zadunaisky JA, DeRobertis EDP (1959) Function of astroglia in the water-ion metabolism of the central nervous system. An electron microscope study.Neurology 9: 412–425.

    Google Scholar 

  • Goldmann EE (1909) Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der ‘vitalen Färbung’.Beitr Z Klin Chir 64: 192–265.

    Google Scholar 

  • Goldmann EE (1913)Vitalfärbungen am Zentralnervensystem. Beitrag zur Physiologie des Plexus choroideus und der Hirnhäute. Berlin: Hirschfeld.

    Google Scholar 

  • Goldstein TR, Harris H (1981) Mammalian brain alkaline phosphatase: expression of liver/bone/kidney locus.J Neurochem 36: 53–57.

    Google Scholar 

  • Guerin C, Laterra J, Hruban RH, Brem H, Drewes LR (1990) The glucose transporter and blood-brain barrier of human brain tumors.Ann Neurol 28: 758–765.

    Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells.Nature 325: 253–257.

    Google Scholar 

  • Janzer RC, Lobrinus A, Juillerat-Jeanneret L, Darekar P (1993) A soluble astrocytic factor induces the expression of HT7 and neurothelin in endothelial cells of the chick chorioallantoic vessels. In Drewes L, Betz LA, eds.Frontiers in Cerebral Vascular Biology: Transport and its Regulation. New York: Plenum Press, in press.

    Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries.Nature 312: 162–163.

    Google Scholar 

  • Juillerat-Jeanneret L, Aguzzi A, Wiestler OD, Darekar P, Janzer RC (1992) Dexamethasone selectively regulates the activity of enzymatic markers of cerebral endothelial cell lines.In Vitro Cell Develop Biol 28A: 537–543.

    Google Scholar 

  • Juillerat-Jeanneret L, Darekar P, Janzer RC (1993) Heterogeneity of microvascular endothelial cells of the brain: a comparison of the effects of extracellular matrix and soluble astrocytic factors.Endothelium: J Endothel Cell Res in press.

  • Karcsu S, Toth L (1982) Die Veränderungen der Butyryl-Cholinesterase-Akitivität der fenestrierten Kapillaren in der Area postrema während der postnatalen Entwicklung.Acta Histochem 71: 83–94.

    Google Scholar 

  • Karnushina IL, Toth I, Dux E, Joo F (1980) Presence of guanylate cyclase in brain capillaries: histochemical and biochemical evidence.Brain Res 189: 588–596.

    Google Scholar 

  • Lasbennes F, Sercombe R, Verrechia C, Seylaz J (1985) Vascular monoamine oxidase activity in the rat brain: variation with the substrate and the vascular segment.Life Sci 36: 2263–2268.

    Google Scholar 

  • Levin VA, Fenstermacher JD, Patlak CS (1970) Sucrose and insulin space measurements of cerebral cortex in four mammalian species.Am J Physiol 219: 1528–1533.

    Google Scholar 

  • Lewandowsky M (1990) Zur Lehre der Zerebrospinalflüssigkeit.Z Klin Med 40: 480–494.

    Google Scholar 

  • Lobrinus A, Juillerat-Jeanneret L, Darekar P, Schlosshauer B, Janzer RC (1992) Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble astrocyte derived factor.Dev Brain Res 70: 207–211.

    Google Scholar 

  • Luse SA (1956) Electron microscopic observations of the central nervous system.J Biophys Biochem Cytol 2: 531–542.

    Google Scholar 

  • Maxwell K, Berliner JA, Cancilla PA (1987) Induction of gamma-glutamyl-transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes.Brain Res 410: 309–314.

    Google Scholar 

  • Maxwell K, Berliner JA, Cancilla PA (1989) Stimulation of glucose analogue uptake by cerebral microvessel endothelial cells by a product released by astrocytes.J Neuropathol Exp Neurol 48: 69–80.

    Google Scholar 

  • Nagy Z, Peters H, Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions.Lab Invest 50: 313–322.

    Google Scholar 

  • Oldendorf WH (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids.Am J Physiol 224: 1450–1453.

    Google Scholar 

  • Owman C, Hardebo JE (1988) Functional heterogeneity of cerebrovascular endothelium.Brain Behav Evol 32: 65–75.

    Google Scholar 

  • Papandrikopoulou A, Frey A, Gassen HG (1989) Cloning and expression of gamma-glutamyl-transpeptidase from isolated porcine brain capillaries.Eur J Biochem 183: 693–698.

    Google Scholar 

  • Pardridge WM (1984) Transport of nutrients and hormones through the blood-brain barrier.Fedn Proc 43: 201–204.

    Google Scholar 

  • Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (Glut-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization.J Biol Chem 265: 18035–18040.

    Google Scholar 

  • Patterson CE, Rhoades RA, Garcia JG (1992) Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung.J Appl Physiol 72: 865–873.

    Google Scholar 

  • Raub TJ, Kuentzel SL, Sawada GA (1992) Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells.Exp Cell Res 199: 330–340.

    Google Scholar 

  • Rapoport SI (1976)Blood-brain Barrier in Physiology and Medicine. New York: Raven Press.

    Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localisation of a blood-brain barrier to exogenous peroxidase.J Cell Biol 34: 207–217.

    Google Scholar 

  • Reese TS, Feder N, Brightman MWQ (1971) Electron microscopic study of the blood-brain barrier and cerebrospinal fluid barriers with microperoxidase.J Neuropathol Exp Neurol 30: 137–148.

    Google Scholar 

  • Risau W, Hallmann R, Albrecht U, Henke-Fahle S (1986) Brain induces the expression of an early cell surface marker for blood-brain barrier specific endothelium.EMBO J 5: 3179–3183.

    Google Scholar 

  • Risau W, Dingler A, Albrecht U, Dehouk MP, Cecchelli R (1992) Blood-brain barrier pericytes are the main source of gamma-glutamyl-transpeptidase activity in brain capillaries.J Neurochem 58: 667–672.

    Google Scholar 

  • Rosenstein JM, Krum JM, Sternberger LA, Pulley MT (1992) Immunocytochemical expression of the endothelial barrier antigen (EBA) during brain angiogenesis.Dev Brain Res 66: 47–54.

    Google Scholar 

  • Schlosshauer B (1991) Neurothelin: molecular characteristics and developmental regulation in the chick CNS.Development 113: 129–140.

    Google Scholar 

  • Schlosshauer B, Herzog KH (1990) Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier specific endothelial cells and distinct neurons.J Cell Biol 110: 1261–1274.

    Google Scholar 

  • Schnitzer JE (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis.Am J Physiol 262: P54.

    Google Scholar 

  • Seulberger H, Lottspeich F, Risau W (1990) The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein.EMBO J 9: 2151–2158.

    Google Scholar 

  • Shivers RR, Betz AL, Goldstein GW (1984) Isolated rat brain capillaries possess intact, structurally complex, interendothelial tight junctions: freeze-fracture verification of tight junction integrity.Brain Res 324: 313–322.

    Google Scholar 

  • Shivers RR, Arthur FE, Bowman PD (1988). Induction of gap junctions and brain-endothelium-like tight junctions in cultured bovine endothelial cells: local control of cell specialization.J Submicrosc Cytol Pathol 20: 1–14.

    Google Scholar 

  • Spatz H (1933) Die Bedeutung der vitalen Färbung für die Lehre vom Stoffaustausch zwischen dem Zentralnervensystem und dem übrigen Körper.Arch Psychiatr Nervenkr 101: 267–358.

    Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras.Dev Biol 84: 183–192.

    Google Scholar 

  • Svendgaard NA, Björklund A, Hardebo A, Stenevi U (1975) Axonal degeneration associated with a defective blood-brain barrier in cerebral implants.Nature 255: 334–337.

    Google Scholar 

  • Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia.J Neurosci 7: 3293–3299.

    Google Scholar 

  • Tio S, Deenen M, Marani E (1990) Astrocyte-mediated induction of alkaline phosphatase activity in human umbilical cord vein endothelium: an in vitro model.Eur J Morphol 28: 289–300.

    Google Scholar 

  • Tontsch U, Bauer HC (1991) Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells.Brain Res 539: 247–253.

    Google Scholar 

  • Tschirgi RD (1950) Protein complexes and the impermeability of the blood-brain barrier.Am J Physiol 163: 756–758.

    Google Scholar 

  • VanBremen VL, Clemente CD (1955) Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope.J Biophys Biochem Cytol 1: 161–198.

    Google Scholar 

  • VanHarrefeld A, Malhotra SK (1967) Extracellular space in the cerebral cortex of the mouse.J Anat 101: 197–207.

    Google Scholar 

  • VanHarrefeld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze substitution.J Cell Biol 25: 117–137.

    Google Scholar 

  • VanHarrefled A, Collewijn H, Malhotra SK (1966) Water, electrolyte and extracellular space in hydrated and dehydrated brains.Am J Physiol 210: 251–256.

    Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Wisniewski HM (1983) Enzyme cytochemistry of blood-brain barrier disturbances. In Hossmann KA, Klatzo I, eds.Cerebrovascular Transport Mechanisms. Acta Neuropathol. (Suppl VIII). Berlin: Springer, 43–59.

    Google Scholar 

  • Wolff J (1963) Beiträge zur Ultrastruktur der Capillaren der normalen Grosshirnrinde.Z Zellforsch 60: 409–431.

    Google Scholar 

  • Wolff JE, Belloni-Olivi L, Bressler JP, Goldstein GW (1992a) Gamma-glutamyl-transpeptidase activity in brain microvessels exhibits regional heterogeneity.J Neurochem 58: 909–915.

    Google Scholar 

  • Wolff JE, Laterra J, Goldstein GW (1992b) Steroid inhibition of neural microvessel morphogenesis in vitro: receptor mediation and astroglial dependence.J Neurochem 58: 1023–1032.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janzer, R.C. The blood-brain barrier: Cellular basis. J Inherit Metab Dis 16, 639–647 (1993). https://doi.org/10.1007/BF00711897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711897

Keywords

Navigation