Skip to main content

Advertisement

Log in

Astrocyte–Endotheliocyte Axis in the Regulation of the Blood–Brain Barrier

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The evolution of blood–brain barrier paralleled centralisation of the nervous system: emergence of neuronal masses required control over composition of the interstitial fluids. The barriers were initially created by glial cells, which employed septate junctions to restrict paracellular diffusion in the invertebrates and tight junctions in some early vertebrates. The endothelial barrier, secured by tight and adherent junctions emerged in vertebrates and is common in mammals. Astrocytes form the parenchymal part of the blood–brain barrier and commutate with endothelial cells through secretion of growth factors, morphogens and extracellular vesicles. These secreted factors control the integrity of the blood–brain barrier through regulation of expression of tight junction proteins. The astrocyte–endotheliocyte communications are particularly important in various neurological diseases associated with impairments to the blood–brain barrier. Molecular mechanisms supporting astrocyte–endotheliocyte axis in health and disease are in need of detailed characterisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  2. Ehrlich P (1885) Das sauerstufbudurfnis des organismus,, Eine Farbenanalytische Studie. Hirschwald, Berlin, p 167

    Google Scholar 

  3. Ehrlich P (1906) The relations existing between chemical constitution, distribution and pharmacological action. In: Ehrlich P (ed) Collected Studies on Immunity translated by C Bolduana from Chap. XXXIV of Gesammelte Arbeiten zur Immunitätsforschung (Berlin: Hirschwald), 1904. Wiley, New York

  4. Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Mollgard K, Bauer HC (2014) The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history. Front Neurosci 8:404. https://doi.org/10.3389/fnins.2014.00404

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goldmann EE (1913) Vitalfarbung am zentralnervensystem. Abhandl Konigl preuss Akad Wiss 1:1–60

    Google Scholar 

  6. Lewandowsky M (1900) Zur lehre von der cerebrospinalflussigkeit. Z Klin Med 40:480–494

    Google Scholar 

  7. Stern L, Gautier R (1918) Le passage dans le liquide céphalo-rachidien de substances introduites dans la circulation et leur action sur le système nerveux central chez les différentes espèces animales. R C R d Ia Soc Phys d’hist nat Genève 35:91–94

    Google Scholar 

  8. Stern L, Gautier R (1921) Recherches sur le liquide céphalo-rachidien. 1. Les rapports entre le liquide céphalo-rachidien et la circulation sanguine. Arch Int Physiol 17:138–192

    CAS  Google Scholar 

  9. Stern L (1934) A propos de la méthod d’investigation du fonctionnement de la barrière hémato-encéphalique. C R Soc Biol 115:1059–1061

    Google Scholar 

  10. Abbott NJ, Lane NJ, Bundgaard M (1986) The blood–brain interface in invertebrates. Ann N Y Acad Sci 481:20–42. https://doi.org/10.1111/j.1749-6632.1986.tb27136.x

    Article  CAS  PubMed  Google Scholar 

  11. Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood–brain barrier 4–500 million years ago. Glia 56:699–708. https://doi.org/10.1002/glia.20642

    Article  PubMed  Google Scholar 

  12. O’Brown NM, Pfau SJ, Gu C (2018) Bridging barriers: a comparative look at the blood–brain barrier across organisms. Genes Dev 32:466–478. https://doi.org/10.1101/gad.309823.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Limmer S, Weiler A, Volkenhoff A, Babatz F, Klambt C (2014) The Drosophila blood–brain barrier: development and function of a glial endothelium. Front Neurosci 8:365. https://doi.org/10.3389/fnins.2014.00365

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silies M, Yuva Y, Engelen D, Aho A, Stork T, Klambt C (2007) Glial cell migration in the eye disc. J Neurosci 27:13130–13139. https://doi.org/10.1523/JNEUROSCI.3583-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Unhavaithaya Y, Orr-Weaver TL (2012) Polyploidization of glia in neural development links tissue growth to blood–brain barrier integrity. Genes Dev 26:31–36. https://doi.org/10.1101/gad.177436.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatan M, Shinder V, Israeli D, Schnorrer F, Volk T (2011) The Drosophila blood–brain barrier is maintained by GPCR-dependent dynamic actin structures. J Cell Biol 192:307–319. https://doi.org/10.1083/jcb.201007095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schulte J, Tepass U, Auld VJ (2003) Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila. J Cell Biol 161:991–1000. https://doi.org/10.1083/jcb.200303192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holcroft CE, Jackson WD, Lin WH, Bassiri K, Baines RA, Phelan P (2013) Innexins Ogre and Inx2 are required in glial cells for normal postembryonic development of the Drosophila central nervous system. J Cell Sci 126:3823–3834. https://doi.org/10.1242/jcs.117994

    Article  CAS  PubMed  Google Scholar 

  19. Speder P, Brand AH (2014) Gap junction proteins in the blood–brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev Cell 30:309–321. https://doi.org/10.1016/j.devcel.2014.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melom JE, Littleton JT (2013) Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. J Neurosci 33:1169–1178. https://doi.org/10.1523/JNEUROSCI.3920-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chintapalli VR, Wang J, Herzyk P, Davies SA, Dow JA (2013) Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia. BMC Genomics 14:518. https://doi.org/10.1186/1471-2164-14-518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bundgaard M, Abbott NJ (1992) Fine structure of the blood–brain interface in the cuttlefish Sepia officinalis (Mollusca, Cephalopoda). J Neurocytol 21:260–275. https://doi.org/10.1007/BF01224760

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Mao Y, Huang Z, Qu M, Chen J, Ding S, Hong J, Sun T (2012) Transcriptome analysis of the Octopus vulgaris central nervous system. PLoS ONE 7:e40320. https://doi.org/10.1371/journal.pone.0040320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bundgaard M, Cserr H (1981) A glial blood–brain barrier in elasmobranchs. Brain Res 226:61–73. https://doi.org/10.1016/0006-8993(81)91083-0

    Article  CAS  PubMed  Google Scholar 

  25. Bundgaard M, Cserr HF (1981) Impermeability of hagfish cerebral capillaries to radio-labelled polyethylene glycols and to microperoxidase. Brain Res 206:71–81. https://doi.org/10.1016/0006-8993(81)90101-3

    Article  CAS  PubMed  Google Scholar 

  26. Jurisch-Yaksi N, Yaksi E, Kizil C (2020) Radial glia in the zebrafish brain: functional, structural, and physiological comparison with the mammalian glia. Glia 68:2451–2470. https://doi.org/10.1002/glia.23849

    Article  PubMed  Google Scholar 

  27. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood–brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  29. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC (2013) The blood–brain barrier: an engineering perspective. Front Neuroeng 6:7. https://doi.org/10.3389/fneng.2013.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu J, Hirschi KK (2019) Endothelial cell development and its application to regenerative medicine. Circ Res 125:489–501. https://doi.org/10.1161/CIRCRESAHA.119.311405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kruger-Genge A, Blocki A, Franke RP, Jung F (2019) Vascular endothelial cell biology: an update. Int J Mol Sci. https://doi.org/10.3390/ijms20184411

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190. https://doi.org/10.1161/01.RES.0000255690.03436.ae

    Article  CAS  PubMed  Google Scholar 

  33. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514. https://doi.org/10.1038/nrm2927

    Article  CAS  PubMed  Google Scholar 

  34. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455. https://doi.org/10.1126/science.2006419

    Article  CAS  PubMed  Google Scholar 

  35. Wettschureck N, Strilic B, Offermanns S (2019) Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev 99:1467–1525. https://doi.org/10.1152/physrev.00037.2018

    Article  CAS  PubMed  Google Scholar 

  36. Huang B, Krafft PR, Ma Q, Rolland WB, Caner B, Lekic T, Manaenko A, Le M, Tang J, Zhang JH (2012) Fibroblast growth factors preserve blood–brain barrier integrity through RhoA inhibition after intracerebral hemorrhage in mice. Neurobiol Dis 46:204–214. https://doi.org/10.1016/j.nbd.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kriauciunaite K, Pociute A, Kausyle A, Pajarskiene J, Verkhratsky A, Pivoriunas A (2021) Concentration-dependent duality of bFGF in regulation of barrier properties of human brain endothelial cells. J Cell Physiol. https://doi.org/10.1002/jcp.30410

    Article  PubMed  Google Scholar 

  38. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62. https://doi.org/10.1113/jphysiol.1990.sp018243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loscher W, Potschka H (2005) Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98. https://doi.org/10.1602/neurorx.2.1.86

    Article  PubMed  PubMed Central  Google Scholar 

  40. Campos-Bedolla P, Walter FR, Veszelka S, Deli MA (2014) Role of the blood–brain barrier in the nutrition of the central nervous system. Arch Med Res 45:610–638. https://doi.org/10.1016/j.arcmed.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  41. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM II, Goldman JE (2014) Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci 34:2285–2298. https://doi.org/10.1523/JNEUROSCI.4037-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  44. Colombo JA (2018) Interlaminar glia and other glial themes revisited: pending answers following three decades of glial research. Neuroglia 1:7–20. https://doi.org/10.3390/neuroglia1010003

    Article  Google Scholar 

  45. Verkhratsky A, Rose CR (2020) Na+-dependent transporters: the backbone of astroglial homeostatic function. Cell Calcium 85:102136. https://doi.org/10.1016/j.ceca.2019.102136

    Article  CAS  PubMed  Google Scholar 

  46. Verkhratsky A, Semyanov A, Zorec R (2020) Physiology of astroglial excitability. Function 1:zqaa016

    Article  PubMed  PubMed Central  Google Scholar 

  47. Verkhratsky A, Untiet V, Rose CR (2020) Ionic signalling in astroglia beyond calcium. J Physiol 598:1655–1670. https://doi.org/10.1113/JP277478

    Article  CAS  PubMed  Google Scholar 

  48. Semyanov A, Henneberger C, Agarwal A (2020) Making sense of astrocytic calcium signals—from acquisition to interpretation. Nat Rev Neurosci 21:551–564. https://doi.org/10.1038/s41583-020-0361-8

    Article  CAS  PubMed  Google Scholar 

  49. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B 369:20130595. https://doi.org/10.1098/rstb.2013.0595

    Article  CAS  Google Scholar 

  50. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  51. Cohen-Salmon M, Slaoui L, Mazare N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC (2021) Astrocytes in the regulation of cerebrovascular functions. Glia 69:817–841. https://doi.org/10.1002/glia.23924

    Article  PubMed  Google Scholar 

  52. Boulay AC, Saubamea B, Adam N, Chasseigneaux S, Mazare N, Gilbert A, Bahin M, Bastianelli L, Blugeon C, Perrin S, Pouch J, Ducos B, Le Crom S, Genovesio A, Chretien F, Decleves X, Laplanche JL, Cohen-Salmon M (2017) Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 3:17005. https://doi.org/10.1038/celldisc.2017.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Howarth C (2014) The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci 8:103. https://doi.org/10.3389/fnins.2014.00103

    Article  PubMed  PubMed Central  Google Scholar 

  54. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403. https://doi.org/10.1038/nn1779

    Article  CAS  PubMed  Google Scholar 

  55. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93:1543–1562. https://doi.org/10.1152/physrev.00011.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cali C, Agus M, Kare K, Boges DJ, Lehvaslaiho H, Hadwiger M, Magistretti PJ (2019) 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 183:101696. https://doi.org/10.1016/j.pneurobio.2019.101696

    Article  CAS  PubMed  Google Scholar 

  58. McCaslin AF, Chen BR, Radosevich AJ, Cauli B, Hillman EM (2011) In vivo 3D morphology of astrocyte–vasculature interactions in the somatosensory cortex: implications for neurovascular coupling. J Cereb Blood Flow Metab 31:795–806. https://doi.org/10.1038/jcbfm.2010.204

    Article  CAS  PubMed  Google Scholar 

  59. Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85:3267–3283. https://doi.org/10.1002/jnr.21376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Y, Xin Y, He Z, Hu W (2018) Function of connexins in the interaction between glial and vascular cells in the central nervous system and related neurological diseases. Neural Plast. https://doi.org/10.1155/2018/6323901

    Article  PubMed  PubMed Central  Google Scholar 

  61. Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN, Sawai S, Flodby P, Crandall ED, Borok Z, Sofroniew MV, Chapouly C, John GR (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Investig 127:3136–3151. https://doi.org/10.1172/JCI91301

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quintana FJ (2017) Astrocytes to the rescue! Glia limitans astrocytic endfeet control CNS inflammation. J Clin Investig 127:2897–2899. https://doi.org/10.1172/JCI95769

    Article  PubMed  PubMed Central  Google Scholar 

  63. Garcia-Caceres C, Balland E, Prevot V, Luquet S, Woods SC, Koch M, Horvath TL, Yi CX, Chowen JA, Verkhratsky A, Araque A, Bechmann I, Tschop MH (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22:7–14. https://doi.org/10.1038/s41593-018-0286-y

    Article  CAS  PubMed  Google Scholar 

  64. Xu L, Nirwane A, Yao Y (2019) Basement membrane and blood–brain barrier. Stroke Vasc Neurol 4:78–82. https://doi.org/10.1136/svn-2018-000198

    Article  PubMed  Google Scholar 

  65. Chen ZL, Yao Y, Norris EH, Kruyer A, Jno-Charles O, Akhmerov A, Strickland S (2013) Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol 202:381–395. https://doi.org/10.1083/jcb.201212032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao Y, Chen ZL, Norris EH, Strickland S (2014) Astrocytic laminin regulates pericyte differentiation and maintains blood–brain barrier integrity. Nat Commun 5:3413. https://doi.org/10.1038/ncomms4413

    Article  CAS  PubMed  Google Scholar 

  67. Mestre H, Mori Y, Nedergaard M (2020) The brain’s glymphatic system: current controversies. Trends Neurosci 43:458–466. https://doi.org/10.1016/j.tins.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, Doubal FN, Brown R, Ramirez J, MacIntosh BJ, Tannenbaum A, Ballerini L, Rungta RL, Boido D, Sweeney M, Montagne A, Charpak S, Joutel A, Smith KJ, Black SE, D. colleagues from the Fondation Leducq Transatlantic Network of Excellence on the Role of the Perivascular Space in Cerebral Small Vessel (2020) Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol 16:137–153. https://doi.org/10.1038/s41582-020-0312-z

    Article  PubMed  Google Scholar 

  69. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. https://doi.org/10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  70. Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F (2020) Locus Coeruleus and neurovascular unit: from its role in physiology to its potential role in Alzheimer’s disease pathogenesis. J Neurosci Res 98:2406–2434. https://doi.org/10.1002/jnr.24718

    Article  CAS  PubMed  Google Scholar 

  71. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. https://doi.org/10.1097/NEN.0b013e318232a379

    Article  CAS  PubMed  Google Scholar 

  72. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485:512–516. https://doi.org/10.1038/nature11087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, Pachicano M, Joe E, Nelson AR, D’Orazio LM, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Reiman EM, Caselli RJ, Chui HC, Tcw J, Chen Y, Pa J, Conti PS, Law M, Toga AW, Zlokovic BV (2020) APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581:71–76. https://doi.org/10.1038/s41586-020-2247-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434. https://doi.org/10.1038/nrn.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mosso A (1880) Sulla circolazione del sangue nel cervello dell’uomo. Mem Real Acc Lincei 5:237–358

    Google Scholar 

  76. Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol (Lond) 11:85–108

    Article  CAS  Google Scholar 

  77. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19:1619–1627. https://doi.org/10.1038/nn.4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marina N, Christie IN, Korsak A, Doronin M, Brazhe A, Hosford PS, Wells JA, Sheikhbahaei S, Humoud I, Paton JFR, Lythgoe MF, Semyanov A, Kasparov S, Gourine AV (2020) Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat Commun 11:131. https://doi.org/10.1038/s41467-019-13956-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 100:328–335. doi:https://doi.org/10.1152/japplphysiol.00966.2005

    Article  CAS  Google Scholar 

  80. Lourenco CF, Ledo A, Caetano M, Barbosa RM, Laranjinha J (2018) Age-dependent impairment of neurovascular and neurometabolic coupling in the hippocampus. Front Physiol 9:913. https://doi.org/10.3389/fphys.2018.00913

    Article  PubMed  PubMed Central  Google Scholar 

  81. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood–brain barrier. Glia 61:1939–1958. https://doi.org/10.1002/glia.22575

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cheslow L, Alvarez JI (2016) Glial–endothelial crosstalk regulates blood–brain barrier function. Curr Opin Pharmacol 26:39–46. https://doi.org/10.1016/j.coph.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  83. Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M (2019) Astrocyte-derived paracrine signals: relevance for neurogenic niche regulation and blood–brain barrier integrity. Front Pharmacol 10:1346. https://doi.org/10.3389/fphar.2019.01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17. https://doi.org/10.1038/s41556-018-0250-9

    Article  CAS  PubMed  Google Scholar 

  85. Pivoriunas A, Verkhratsky A (2021) Astrocyte-derived extracellular vesicles mediate intercellular communications of the neurogliovascular unit. Neural Regen Res 16:1421–1422. https://doi.org/10.4103/1673-5374.300994

    Article  PubMed  Google Scholar 

  86. Upadhya R, Zingg W, Shetty S, Shetty AK (2020) Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 323:225–239. https://doi.org/10.1016/j.jconrel.2020.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fitzgerald W, Freeman ML, Lederman MM, Vasilieva E, Romero R, Margolis L (2018) A system of cytokines encapsulated in extracellular vesicles. Sci Rep 8:8973. https://doi.org/10.1038/s41598-018-27190-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rocchio F, Tapella L, Manfredi M, Chisari M, Ronco F, Ruffinatti FA, Conte E, Canonico PL, Sortino MA, Grilli M, Marengo E, Genazzani AA, Lim D (2019) Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer’s disease mouse model. Cell Death Dis 10:24. https://doi.org/10.1038/s41419-018-1264-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kriauciunaite K, Kausyle A, Pajarskiene J, Tunaitis V, Lim D, Verkhratsky A, Pivoriunas A (2021) Immortalised hippocampal astrocytes from 3xTG-AD mice fail to support BBB integrity In vitro: role of extracellular vesicles in glial-endothelial communication. Cell Mol Neurobiol 41:551–562. https://doi.org/10.1007/s10571-020-00871-w

    Article  CAS  PubMed  Google Scholar 

  90. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045. https://doi.org/10.1038/ncb2574

    Article  CAS  PubMed  Google Scholar 

  91. Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J (2014) Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci Rep 4:7357. https://doi.org/10.1038/srep07357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Diaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Gotz M, Gutierrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Perez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  94. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–1731. https://doi.org/10.1126/science.1206936

    Article  CAS  PubMed  Google Scholar 

  95. Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. (corrected). Cell Stem Cell 12:426–439. https://doi.org/10.1016/j.stem.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  96. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Investig 122:2454–2468. https://doi.org/10.1172/JCI60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S (2021) Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain. Glia 69:436–472. https://doi.org/10.1002/glia.23908

    Article  CAS  PubMed  Google Scholar 

  98. Kubotera H, Ikeshima-Kataoka H, Hatashita Y, Allegra Mascaro AL, Pavone FS, Inoue T (2019) Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci Rep 9:1263. https://doi.org/10.1038/s41598-018-37419-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schreiner B, Romanelli E, Liberski P, Ingold-Heppner B, Sobottka-Brillout B, Hartwig T, Chandrasekar V, Johannssen H, Zeilhofer HU, Aguzzi A, Heppner F, Kerschensteiner M, Becher B (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12:1377–1384. https://doi.org/10.1016/j.celrep.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  100. Guerit S, Fidan E, Macas J, Czupalla CJ, Figueiredo R, Vijikumar A, Yalcin BH, Thom S, Winter P, Gerhardt H, Devraj K, Liebner S (2021) Astrocyte-derived Wnt growth factors are required for endothelial blood–brain barrier maintenance. Prog Neurobiol 199:101937. https://doi.org/10.1016/j.pneurobio.2020.101937

    Article  CAS  PubMed  Google Scholar 

  101. Kang W, Balordi F, Su N, Chen L, Fishell G, Hebert JM (2014) Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proc Natl Acad Sci U S A 111:E2987–E2995. https://doi.org/10.1073/pnas.1320401111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D (2013) Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife 2:e00362. https://doi.org/10.7554/eLife.00362

    Article  PubMed  PubMed Central  Google Scholar 

  103. Linnerbauer M, Rothhammer V (2020) Protective functions of reactive astrocytes following central nervous system insult. Front Immunol 11:573256. https://doi.org/10.3389/fimmu.2020.573256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sengul B, Dursun E, Verkhratsky A, Gezen-Ak D (2021) Overexpression of alpha-Synuclein reorganises growth factor profile of human astrocytes. Mol Neurobiol 58:184–203. https://doi.org/10.1007/s12035-020-02114-x

    Article  CAS  PubMed  Google Scholar 

  105. Neal EH, Marinelli NA, Shi Y, McClatchey PM, Balotin KM, Gullett DR, Hagerla KA, Bowman AB, Ess KC, Wikswo JP, Lippmann ES (2019) A simplified, fully defined differentiation scheme for producing blood–brain barrier endothelial cells from human iPSCs. Stem Cell Rep 12:1380–1388. https://doi.org/10.1016/j.stemcr.2019.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Grant Measure (No. 09.3.3-LMT-K-712-01-0082) to AP and AV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Augustas Pivoriūnas or Alexei Verkhratsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivoriūnas, A., Verkhratsky, A. Astrocyte–Endotheliocyte Axis in the Regulation of the Blood–Brain Barrier. Neurochem Res 46, 2538–2550 (2021). https://doi.org/10.1007/s11064-021-03338-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03338-6

Keywords

Navigation