Skip to main content

The Blood-Brain Barrier

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration

Abstract

The blood-brain barrier (BBB) is the anatomophysiological unit that interfaces between the blood and the brain. It is composed of brain vascular endothelial cells and their surrounding astrocytes and pericytes. These cells interface with neurons to form a functional unit that regulates blood flow in the brain and the traffic of substances between blood and brain parenchyma. The proper function of the BBB requires specialized roles for each of the cell types that compose it; thus, the endothelial cells form a proper biological barrier by expressing tight junctions (TJ) that seal the intercellular space while forming paracellular ion pores. The expression of TJ brings an additional benefit to the endothelial cells as they are determinants of membrane polarization; the resulting cell polarity is crucial for the proper expression of membrane transporters and ion channels responsible for the transcellular exchange of substances across the endothelium. The physiological properties of endothelial cells, however, are regulated by their interaction with astrocytes and pericytes that in turn interact with each other and nearby neurons. This chapter explores the cellular structure of the blood-brain barrier and provides an introduction to the molecular characteristics of tight junctions and electrophysiological properties of the brain vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrlich P. Das sauerstufbudurfnis des organismus. Eine Farbenanalytische Studie. Berlin: Hirschwald; 1885.

    Google Scholar 

  2. Lewandowsky M. Zur lehre von der cerebrospinalflussigkeit. Z Klin Med. 1900;40:480–94.

    Google Scholar 

  3. Goldmann EE. Vitalfärbung am Zentralnervensystem. Beitrag zur Physiopathologie des Plexus chorioideus und der Hirnhäute. Abh Preuss Akd Wiss Phys Math Kl I. 1913;1:1–13.

    Google Scholar 

  4. Du Bois-Reymond EH. Vorlaufiger Abriss einer Untersuchung über den sogenannten Froschstrom und über die elektromotorischen Fische. Poggendorffs Ann Phys Chem. 1843;58:1–22.

    Article  Google Scholar 

  5. Du Bois Reymond EH. Untersuchungen über Tierische Elektrizität. Berlin, Germany: Reimer; 1848.

    Google Scholar 

  6. Galeotti G. Concerning the EMF which is generated at the surface of animal membranes on contact with different electrolytes. Z Phys Chem. 1904;49:542–52.

    Google Scholar 

  7. Galeotti G. Ricercerche di elettrofisiologia secondo I criteri dell’elettrochimica. Z Allg Physiol. 1907;6:99–108.

    Google Scholar 

  8. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951;23:110–27.

    Article  CAS  PubMed  Google Scholar 

  9. Koefoed-Johnsen V, Ussing HH. The nature of the frog skin potential. Acta Physiol Scand. 1958;42:298–308.

    Article  CAS  PubMed  Google Scholar 

  10. Skou JC. The influence of some cations on an adenosine triphosphatase from the peripheral nerves. Biochim Biophys Acta. 1957;23:394.

    Article  CAS  PubMed  Google Scholar 

  11. Cereijido M, Ponce A, Gonzalez-Mariscal L. Tight junctions and apical/basolateral polarity. J Membr Biol. 1989;110:1–9.

    Article  CAS  Google Scholar 

  12. Ussing HH, Windhager EE. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol Scand. 1964;61:484–504.

    CAS  PubMed  Google Scholar 

  13. Frömter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235:9–13.

    Article  PubMed  Google Scholar 

  14. Powell DW. Barrier function of epithelia. Am J Physiol. 1981;241:G275–88.

    CAS  PubMed  Google Scholar 

  15. Schneeberger EE, Lynch RD. Structure, function, and regulation of cellular tight junctions. Am J Physiol. 1992;262:L647–61.

    CAS  PubMed  Google Scholar 

  16. Spring K. Routes and mechanism of fluid transport by epithelia. Annu Rev Physiol. 1998;60:105–19.

    Article  CAS  PubMed  Google Scholar 

  17. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.

    Article  CAS  PubMed  Google Scholar 

  18. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103:755–66.

    Article  CAS  PubMed  Google Scholar 

  19. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–88.

    Article  CAS  PubMed  Google Scholar 

  20. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.

    Article  CAS  PubMed  Google Scholar 

  22. Krause G, Winkler L, Piehl C, Blasig I, Piontek J, Müller SL. Structure and function of extracellular claudin domains. Ann N Y Acad Sci. 2009;1165:34–43.

    Article  CAS  PubMed  Google Scholar 

  23. Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J. 2008;22:146–58.

    Article  CAS  PubMed  Google Scholar 

  24. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999;147:891–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006;22:207–35.

    Article  CAS  PubMed  Google Scholar 

  26. Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 2001;153:263–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Blasig I, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family—oxidative stress and reducing conditions. Antioxid Redox Signal. 2011;15:1195–219.

    Article  CAS  PubMed  Google Scholar 

  28. Aijaz S, D’Atri F, Citi S, Balda MS, Matter K. Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell. 2005;8:777–86.

    Article  CAS  PubMed  Google Scholar 

  29. Dörfel MJ, Westphal JK, Huber O. Differential phosphorylation of occludin and tricellulin by CK2 and CK1. Ann N Y Acad Sci. 2009;1165:69–73.

    Article  PubMed  Google Scholar 

  30. Rao RK, Basuroy S, Rao VU, Karnaky KJ, Gupta A. Tyrosine phosphorylation and dissociation of occludin-Z0-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368:471–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci. 2009;1165:62–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 2010;21:1200–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell. 2009;20:3713–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Steed E, Rodrigues NT, Balda MS, Matter K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol. 2009;10:95.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Furuse M, Oda Y, Higashi T, Iwamoto N, Masuda S. Lipolysis-stimulated lipoprotein receptor: a novel membrane protein of tricellular tight junctions. Ann N Y Acad Sci. 2012;1257:54–8.

    Article  CAS  PubMed  Google Scholar 

  37. Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM, Stehle T, Dermody TS, Schaefer SA, Hall RA, Nusrat A, Parkos CA. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell. 2013;24:2849–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000;275:20520–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A. 2001;98:15191–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol. 2000;11:315–24.

    Article  CAS  PubMed  Google Scholar 

  41. Bal MS, Castro V, Piontek J, Rueckert C, Walter JK, Shymanets A, Kurig B, Haase H, Nürnberg B, Blasig IE. The hinge region of the scaffolding protein of cell contacts, zonula occludens protein 1, regulates interacting with various signaling proteins. J Cell Biochem. 2012;113:934–45.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong Y, Zhang B, Eum SY, Toborek M. HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci. 2012;32:143–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol. 1993;264:C918–24.

    CAS  PubMed  Google Scholar 

  44. Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, Gonzalez-Mariscal L. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res. 2004;292:51–66.

    Article  CAS  PubMed  Google Scholar 

  45. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol. 2000;2:540–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y. Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem. 2010;285:5003–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M, Togawa A, Takahashi K, Nishioka H, Yoshida H, Mizoguchi A, Nishikawa S, Takai Y. Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J Cell Biol. 1999;146:1117–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Takai Y, Nakanishi H. Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci. 2003;116:17–27.

    Article  CAS  PubMed  Google Scholar 

  49. Ullmer C, Schmuck K, Figge A, Lübbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 1998;424:63–8.

    Article  CAS  PubMed  Google Scholar 

  50. Adachi M, Hamazaki Y, Kobayashi Y, Itoh M, Tsukita S, Furuse M, Tsukita S. Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol Cell Biol. 2009;29:2372–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, Guillemot L. The tight junction protein cingulin regulates gene expression and RhoA signaling. Ann N Y Acad Sci. 2009;1165:88–98.

    Article  CAS  PubMed  Google Scholar 

  52. Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol. 2010;72:463–93.

    Article  CAS  PubMed  Google Scholar 

  53. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  54. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology. 2008;55:1265–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol. 2008;48:359–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Shen L, Turner JR. Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell. 2005;16:3919–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 2010;7:338–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C, Rowitch DH, Wong WH, DePinho RA. Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A. 2004;101:8384–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30.

    Article  CAS  PubMed  Google Scholar 

  60. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335:75–96.

    Article  PubMed  Google Scholar 

  62. Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 2009;15: 180–93.

    Article  CAS  PubMed  Google Scholar 

  63. Loaiza A, Porras OH, Barros LF. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci. 2003;23:7337–42.

    CAS  PubMed  Google Scholar 

  64. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  65. Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010;58:1–10.

    Article  PubMed  Google Scholar 

  66. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58:1094–103.

    Article  PubMed  Google Scholar 

  67. Sims DE. The pericyte-a review. Tissue Cell. 1986;18:153–74.

    Article  CAS  PubMed  Google Scholar 

  68. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol. 2006;291:F1132–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S. Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell. 2008;19:4687–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yamamoto T1, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol. 1997;139(3):785–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Castro M.D., Ph.D. or Michal Toborek M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castro, V., Toborek, M. (2014). The Blood-Brain Barrier. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_1

Download citation

Publish with us

Policies and ethics